참고문헌
- Askes, H. and Aifantis, E.C. (2009), "Gradient elasticity and flexural wave dispersion in carbon nanotubes", Phys. Rev. B, 80(19), 195412.
- Azadi, V., Azadi, M., Fazelzadeh, S.A. and Azadi, E. (2014), "Active control of an fgm beam under follower force with piezoelectric sensors/actuators", Int. J. Struct. Stabil. Dyn., 14(2), 1350063. https://doi.org/10.1142/S0219455413500636
- Barati, M.R. (2017a), "On wave propagation in nanoporous materials", Int. J. Eng. Sci., 116, 1-11. https://doi.org/10.1016/j.ijengsci.2017.03.007
- Barati, M.R. (2017b), "Vibration analysis of FG nanoplates with nanovoids on viscoelastic substrate under hygro-thermomechanical loading using nonlocal strain gradient theory", Struct. Eng. Mech., Int. J., 64(6), 683-693.
- Barati, M.R. and Zenkour, A. (2017), "A general bi-Helmholtz nonlocal strain-gradient elasticity for wave propagation in nanoporous graded double-nanobeam systems on elastic substrate", Compos. Struct., 168, 885-892.
- Bellifa, H., Bakora, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S. (2017), "An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates", Steel Compos. Struct., Int. J., 25(3), 257-270.
- Bhattacharyya, M., Kapuria, S. and Kumar, A. (2007), "On the stress to strain transfer ratio and elastic deflection behavior for Al/SiC functionally graded material", Mech. Adv. Mater. Struct., 14(4), 295-302. https://doi.org/10.1080/15376490600817917
- Ebrahimi, F. and Dabbagh, A. (2018), "Wave dispersion characteristics of nonlocal strain gradient double-layered graphene sheets in hygro-thermal environments", Struct. Eng. Mech., Int. J., 65(6), 645-656.
- Elmossouess, B., Kebdani, S., Bouiadjra, M.B. and Tounsi, A. (2017), "A novel and simple HSDT for thermal buckling response of functionally graded sandwich plates". Struct. Eng. Mech., Int. J., 62(4), 401-415. https://doi.org/10.12989/sem.2017.62.4.401
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
- Farokhi, H. and Ghayesh, M.H. (2015), "Thermo-mechanical dynamics of perfect and imperfect Timoshenko microbeams", Int. J. Eng. Sci., 91, 12-33.
- Farokhi, H., Ghayesh, M.H. and Amabili, M. (2013), "Nonlinear dynamics of a geometrically imperfect microbeam based on the modified couple stress theory", Int. J. Eng. Sci., 68, 11-23. https://doi.org/10.1016/j.ijengsci.2013.03.001
- Fazzolari, F.A. (2016), "Modal characteristics of P-and S-FGM plates with temperature-dependent materials in thermal environment", J. Thermal Stresses, 39(7), 854-873. https://doi.org/10.1080/01495739.2016.1189772
- Ghayesh, M.H. (2018a), "Dynamics of functionally graded viscoelastic microbeams", Int. J. Eng. Sci., 124, 115-131. https://doi.org/10.1016/j.ijengsci.2017.11.004
- Ghayesh, M.H. (2018b), "Functionally graded microbeams: simultaneous presence of imperfection and viscoelasticity", Int. J. Mech. Sci., 140, 339-350. https://doi.org/10.1016/j.ijmecsci.2018.02.037
- Ghayesh, M.H. (2018c), "Mechanics of tapered AFG sheardeformable microbeams", Microsyste. Technol., 24(4), 1743-1754. https://doi.org/10.1007/s00542-018-3764-y
- Ghayesh, M.H. (2018d), "Nonlinear vibration analysis of axially functionally graded shear-deformable tapered beams", Appl. Math. Model., 59, 583-596.
- Ghayesh, M.H., Amabili, M. and Farokhi, H. (2013a), "Nonlinear forced vibrations of a microbeam based on the strain gradient elasticity theory", Int. J. Eng. Sci., 63, 52-60. https://doi.org/10.1016/j.ijengsci.2012.12.001
- Ghayesh, M.H., Amabili, M. and Farokhi, H. (2013b), "Threedimensional nonlinear size-dependent behaviour of Timoshenko microbeams", Int. J. Eng. Sci., 71, 1-14.
- Ghayesh, M.H., Farokhi, H. and Amabili, M. (2013c), "Nonlinear behaviour of electrically actuated MEMS resonators", Int. J. Eng. Sci., 71, 137-155. https://doi.org/10.1016/j.ijengsci.2013.05.006
- Ghayesh, M.H., Farokhi, H. and Amabili, M. (2013d), "Nonlinear dynamics of a microscale beam based on the modified couple stress theory", Compos. Part B: Eng., 50, 318-324. https://doi.org/10.1016/j.compositesb.2013.02.021
- Ghayesh, M.H., Farokhi, H. and Amabili, M. (2014), "In-plane and out-of-plane motion characteristics of microbeams with modal interactions", Compos. Part B: Eng., 60, 423-439. https://doi.org/10.1016/j.compositesb.2013.12.074
- Ghayesh, M.H., Farokhi, H. and Gholipour, A. (2017), "Oscillations of functionally graded microbeams", Int. J. Eng. Sci., 110, 35-53. https://doi.org/10.1016/j.ijengsci.2016.09.011
- Gholipour, A., Farokhi, H. and Ghayesh, M.H. (2015), "In-plane and out-of-plane nonlinear size-dependent dynamics of microplates", Nonlinear Dyn., 79(3), 1771-1785. https://doi.org/10.1007/s11071-014-1773-7
- Gupta, A. and Talha, M. (2017), "Influence of porosity on the flexural and free vibration responses of functionally graded plates in thermal environment", Int. J. Struct. Stabil. Dyn., 1850013.
- Hachemi, H., Kaci, A., Houari, M.S.A., Bourada, M., Tounsi, A. and Mahmoud, S. (2017), "A new simple three-unknown shear deformation theory for bending analysis of FG plates resting on elastic foundations", Steel Compos. Struct., Int. J., 25(6), 717-726.
- Huang, X.-L. and Shen, H.-S. (2004), "Nonlinear vibration and dynamic response of functionally graded plates in thermal environments", Int. J. Solids Struct., 41(9), 2403-2427. https://doi.org/10.1016/j.ijsolstr.2003.11.012
- Kapuria, S., Bhattacharyya, M. and Kumar, A. (2008), "Bending and free vibration response of layered functionally graded beams: a theoretical model and its experimental validation", Compos. Struct., 82(3), 390-402. https://doi.org/10.1016/j.compstruct.2007.01.019
- Karami, B. and Janghorban, M. (2016), "Effect of magnetic field on the wave propagation in nanoplates based on strain gradient theory with one parameter and two-variable refined plate theory", Modern Phys. Lett. B, 30(36), 1650421. https://doi.org/10.1142/S0217984916504212
- Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct., Int. J., 25(3), 361-374.
- Karami, B., Janghorban, M. and Li, L. (2018a), "On guided wave propagation in fully clamped porous functionally graded nanoplates", Acta Astronautica, 143, 380-390. https://doi.org/10.1016/j.actaastro.2017.12.011
- Karami, B., Janghorban, M., Shahsavari, D. and Tounsi, A. (2018b), "A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates", Steel Compos. Struct., Int. J., 28(1), 99-110.
- Karami, B., Janghorban, M. and Tounsi, A. (2018c), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., Int. J., 27(2), 201-216.
- Karami, B., Janghorban, M. and Tounsi, A. (2018d), "Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory", Thin-Wall. Struct., 129, 251-264. https://doi.org/10.1016/j.tws.2018.02.025
- Karami, B., Shahsavari, D. and Janghorban, M. (2018e), "Wave propagation analysis in functionally graded (FG) nanoplates under in-plane magnetic field based on nonlocal strain gradient theory and four variable refined plate theory", Mech. Adv. Mater. Struct., 25(12), 1047-1057.
- Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2018f), "Wave dispersion of mounted graphene with initial stress", Thin-Wall. Struct., 122, 102-111. https://doi.org/10.1016/j.tws.2017.10.004
- Karami, B., Shahsavari, D., Karami, M. and Li, L. (2018g), "Hygrothermal wave characteristic of nanobeam-type inhomogeneous materials with porosity under magnetic field", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 0954406218781680.
- Karami, B., Shahsavari, D. and Li, L. (2018h), "Hygrothermal wave propagation in viscoelastic graphene under in-plane magnetic field based on nonlocal strain gradient theory", Physica E: Low-dimensional Syst. Nanostruct., 97, 317-327.
- Karami, B., Shahsavari, D. and Li, L. (2018i), "Temperaturedependent flexural wave propagation in nanoplate-type porous heterogenous material subjected to in-plane magnetic field", J. Thermal Stresses, 41(4), 483-499. https://doi.org/10.1080/01495739.2017.1393781
- Karami, B., Shahsavari, D., Li, L., Karami, M. and Janghorban, M. (2018j), "Thermal buckling of embedded sandwich piezoelectric nanoplates with functionally graded core by a nonlocal second-order shear deformation theory", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 0954406218756451.
- Klouche, F., Darcherif, L., Sekkal, M., Tounsi, A. and Mahmoud, S. (2017), "An original single variable shear deformation theory for buckling analysis of thick isotropic plates", Struct. Eng. Mech., Int. J., 63(4), 439-446.
- Koutsoumaris, C.C., Vogiatzis, G., Theodorou, D., Tsamasphyros, G., Simos, T.E., Kalogiratou, Z. and Monovasilis, T. (2015), "Application of bi-Helmholtz nonlocal elasticity and molecular simulations to the dynamical response of carbon nanotubes", AIP Conference Proceedings, AIP Publishing, 190011.
- Lam, D.C.C., Yang, F., Chong, A., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X
- Lazar, M., Maugin, G.A. and Aifantis, E.C. (2006), "On a theory of nonlocal elasticity of bi-Helmholtz type and some applications", Int. J. Solids Struct., 43(6), 1404-1421. https://doi.org/10.1016/j.ijsolstr.2005.04.027
- Li, L. and Hu, Y. (2016a), "Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 107, 77-97. https://doi.org/10.1016/j.ijengsci.2016.07.011
- Li, L. and Hu, Y. (2016b), "Wave propagation in fluid-conveying viscoelastic carbon nanotubes based on nonlocal strain gradient theory", Computat. Mater. Sci., 112, 282-288. https://doi.org/10.1016/j.commatsci.2015.10.044
- Li, J.F., Takagi, K., Ono, M., Pan, W., Watanabe, R., Almajid, A. and Taya, M. (2003), "Fabrication and evaluation of porous piezoelectric ceramics and porosity-graded piezoelectric actuators", J. Am. Ceramic Soc., 86(7), 1094-1098. https://doi.org/10.1111/j.1151-2916.2003.tb03430.x
- Li, Q., Iu, V. and Kou, K. (2009), "Three-dimensional vibration analysis of functionally graded material plates in thermal environment", J. Sound Vib., 324(3), 733-750. https://doi.org/10.1016/j.jsv.2009.02.036
- Li, L., Hu, Y. and Ling, L. (2015), "Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory", Compos. Struct., 133, 1079-1092.
- Li, L., Hu, Y. and Ling, L. (2016), "Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory", Physica E: Low-dimensional Syst. Nanostruct., 75, 118-124. https://doi.org/10.1016/j.physe.2015.09.028
- Lim, C., Zhang, G. and Reddy, J. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001
- Lin, Q.-Y., Jing, G., Zhou, Y.-B., Wang, Y.-F., Meng, J., Bie, Y.-Q., Yu, D.-P. and Liao, Z.-M. (2013), "Stretch-induced stiffness enhancement of graphene grown by chemical vapor deposition", ACS Nano, 7(2), 1171-1177. https://doi.org/10.1021/nn3053999
- Mechab, I., Atmane, H.A., Tounsi, A. and Belhadj, H.A. (2010), "A two variable refined plate theory for the bending analysis of functionally graded plates", Acta Mech. Sinica, 26(6), 941-949. https://doi.org/10.1007/s10409-010-0372-1
- Mechab, I., Mechab, B., Benaissa, S., Serier, B. and Bouiadjra, B.B. (2016), "Free vibration analysis of FGM nanoplate with porosities resting on Winkler Pasternak elastic foundations based on two-variable refined plate theories", J. Brazil. Soc. Mech. Sci. Eng., 8(38), 2193-2211.
- Meftah, A., Bakora, A., Zaoui, F.Z., Tounsi, A. and Bedia, E.a.A. (2017), "A non-polynomial four variable refined plate theory for free vibration of functionally graded thick rectangular plates on elastic foundation", Steel Compos. Struct., Int. J., 23(3), 317-330.
- Merdaci, S., Tounsi, A. and Bakora, A. (2016), "A novel four variable refined plate theory for laminated composite plates", Steel Compos. Struct., Int. J., 22(4), 713-732. https://doi.org/10.12989/scs.2016.22.4.713
- Nami, M.R. and Janghorban, M. (2014), "Wave propagation in rectangular nanoplates based on strain gradient theory with one gradient parameter with considering initial stress", Modern Phys. Lett. B, 28(03), 1450021.
- Narendar, S. and Gopalakrishnan, S. (2012), "Scale effects on buckling analysis of orthotropic nanoplates based on nonlocal two-variable refined plate theory", Acta Mechanica, 223(2), 395-413. https://doi.org/10.1007/s00707-011-0560-5
- Panyatong, M., Chinnaboon, B. and Chucheepsakul, S. (2016), "Free vibration analysis of FG nanoplates embedded in elastic medium based on second-order shear deformation plate theory and nonlocal elasticity", Compos. Struct., 153, 428-441.
- Praveen, G. and Reddy, J. (1998), "Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates", Int. J. Solids Struct., 35(33), 4457-4476. https://doi.org/10.1016/S0020-7683(97)00253-9
- Rad, A.B. (2015), "Thermo-elastic analysis of functionally graded circular plates resting on a gradient hybrid foundation", Appl. Math. Computat., 256, 276-298.
- Reddy, J. and Chin, C. (1998), "Thermomechanical analysis of functionally graded cylinders and plates", J. Thermal Stresses, 21(6), 593-626. https://doi.org/10.1080/01495739808956165
- Sarangan, S. and Singh, B. (2016), "Higher-order closed-form solution for the analysis of laminated composite and sandwich plates based on new shear deformation theories", Compos. Struct., 138, 391-403.
- Sehoul, M., Benguediab, M., Bakora, A. and Tounsi, A. (2017), "Free vibrations of laminated composite plates using a novel four variable refined plate theory", Steel Compos. Struct., Int. J., 24(5), 603-613.
- Sekkal, M., Fahsi, B., Tounsi, A. and Mahmoud, S. (2017), "A novel and simple higher order shear deformation theory for stability and vibration of functionally graded sandwich plate", Steel Compos. Struct., Int. J., 25(4), 389-401.
- Shahsavari, D. and Janghorban, M. (2017), "Bending and shearing responses for dynamic analysis of single-layer graphene sheets under moving load", J. Brazil. Soc. Mech. Sci. Eng., 39(10), 3849-3861. https://doi.org/10.1007/s40430-017-0863-0
- Shahsavari, D., Karami, B., Janghorban, M. and Li, L. (2017), "Dynamic characteristics of viscoelastic nanoplates under moving load embedded within visco-Pasternak substrate and hygrothermal environment", Mater. Res. Express, 4(8), 085013. https://doi.org/10.1088/2053-1591/aa7d89
- Shahsavari, D., Karami, B. and Mansouri, S. (2018a), "Shear buckling of single layer graphene sheets in hygrothermal environment resting on elastic foundation based on different nonlocal strain gradient theories", Eur. J. Mech.-A/Solids, 67, 200-214. https://doi.org/10.1016/j.euromechsol.2017.09.004
- Shahsavari, D., Shahsavari, M., Li, L. and Karami, B. (2018b), "A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation", Aerosp. Sci. Technol., 72, 134-149. https://doi.org/10.1016/j.ast.2017.11.004
- She, G.-L., Yuan, F.-G., Ren, Y.-R. and Xiao, W.-S. (2017), "On buckling and postbuckling behavior of nanotubes", Int. J. Eng. Sci., 121, 130-142. https://doi.org/10.1016/j.ijengsci.2017.09.005
- She, G.-L., Ren, Y.-R., Yuan, F.-G. and Xiao, W.-S. (2018), "On vibrations of porous nanotubes", Int. J. Eng. Sci., 125, 23-35. https://doi.org/10.1016/j.ijengsci.2017.12.009
- Shimpi, R.P. (2002), "Refined plate theory and its variants", AIAA Journal, 40(1), 137-146. https://doi.org/10.2514/2.1622
- Shimpi, R. and Patel, H. (2006a), "Free vibrations of plate using two variable refined plate theory", J. Sound Vib., 296(4), 979-999. https://doi.org/10.1016/j.jsv.2006.03.030
- Shimpi, R. and Patel, H. (2006b), "A two variable refined plate theory for orthotropic plate analysis", Int. J. Solids Struct., 43(22-23), 6783-6799. https://doi.org/10.1016/j.ijsolstr.2006.02.007
- Thai, H.-T. and Kim, S.-E. (2012), "Analytical solution of a two variable refined plate theory for bending analysis of orthotropic Levy-type plates", Int. J. Mech. Sci., 54(1), 269-276. https://doi.org/10.1016/j.ijmecsci.2011.11.007
- Touloukian, Y.S. and Ho, C. (1970), "Thermal expansion. Nonmetallic solids", Thermophysical properties of matter-The TPRC Data Series, New York: IFI/Plenum, 1970-, edited by Touloukian, YS e (series ed.); Ho, CY e (series tech. ed.).
- Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002
- Yahia, S.A., Atmane, H.A., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., Int. J., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
- Zhu, X. and Li, L. (2017), "Closed form solution for a nonlocal strain gradient rod in tension", Int. J. Eng. Sci., 119, 16-28. https://doi.org/10.1016/j.ijengsci.2017.06.019
- Zhu, J., Lai, Z., Yin, Z., Jeon, J. and Lee, S. (2001), "Fabrication of ZrO 2-NiCr functionally graded material by powder metallurgy", Mater. Chem. Phys., 68(1), 130-135. https://doi.org/10.1016/S0254-0584(00)00355-2
- Zidi, M., Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S. (2017), "A novel simple two-unknown hyperbolic shear deformation theory for functionally graded beams", Struct. Eng. Mech., Int. J., 64(2), 145-153.
피인용 문헌
- Elastic guided waves in fully-clamped functionally graded carbon nanotube-reinforced composite plates vol.6, pp.9, 2019, https://doi.org/10.1088/2053-1591/ab3474
- Using IGA and trimming approaches for vibrational analysis of L-shape graphene sheets via nonlocal elasticity theory vol.33, pp.5, 2019, https://doi.org/10.12989/scs.2019.33.5.717
- A new higher-order shear and normal deformation theory for the buckling analysis of new type of FGM sandwich plates vol.72, pp.5, 2019, https://doi.org/10.12989/sem.2019.72.5.653
- Influence of vacancy defects on vibration analysis of graphene sheets applying isogeometric method: Molecular and continuum approaches vol.34, pp.2, 2020, https://doi.org/10.12989/scs.2020.34.2.261
- Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation vol.38, pp.1, 2018, https://doi.org/10.12989/scs.2021.38.1.001
- Free vibration analysis of open-cell FG porous beams: analytical, numerical and ANN approaches vol.40, pp.2, 2021, https://doi.org/10.12989/scs.2021.40.2.157
- Dispersion of waves characteristics of laminated composite nanoplate vol.40, pp.3, 2018, https://doi.org/10.12989/scs.2021.40.3.355