• Title/Summary/Keyword: nanoporous materials

Search Result 113, Processing Time 0.032 seconds

Functional Nannomaterials Based on Nanoporous Template

  • Kim, Jin-Gon;Yang, Seung-Yun;Byeon, Jin-Seok;Jeon, Geum-Hye;Jo, A-Ra
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.7.1-7.1
    • /
    • 2011
  • Nanoporous templates have been widely used for the development of new functional nanostructured materials suitable for electronics, optics, magnetism, and energy storage materials. We have prepared nanoporous templates by using thin films of mixtures of polystyrene-block-poly (methyl methacrylate) (PS-b-PMMA) and PMMA homopolymers. These templates have cylindrical nanoholes spanning the entire thickness of the film. Some applications of nanoporous templates are introduced: a) anti-reflective coating, b) the preparation of conducting polymer nanowires of poly (pyrrole), poly (3,4-ethylenedioxy-thiopene) onto a glass coated with indium-tin-oxide, and c) the separation membranes for biomaterials. We found that when the pore fraction of nanoholes in the film was ~0.68, almost zero reflectance at a specific wavelength, which can be changed with film thickness, was achieved at visible wavelengths Furthermore, ultra high density array of conducting nanowires was successfully prepared onto various substrates including flexible polymer. Due to highly alignment of polymer chain along the nanowire direction, the conductivity was much increased. Furthermore, these nanoporous films were found to be very effective for the separation of human Rhinovirus type 14 (HRV 14), major pathogen of a common cold in humans, from the buffer solution. We also found that when the pore size was effectively controlled down to 6 nm, a single file diffusion was observed.

  • PDF

Thermally Stable Antireflective Coatings based on Nanoporous Organosilicate

  • Kim, Su-Han;Cho, Jin-Han;Char, Kook-Heon
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.282-282
    • /
    • 2006
  • Nanoporous organosilicate thin films were realized by the microphase separation of pore generating components mixed with an organosilicate matrix. The refractive index of such nanoporous organosilicate films can be tuned in the range of $1.40{\sim}1.22$. With a nanoporous single layer with n ${\sim}1.225,\;99.85\;%$ transmittance in the visible range was achieved. In order to overcome the limitation on the narrow wavelength for high transmittance imposed by single nanoporous thin films, bilayer thin films with different reflectance for each layer were prepared by inserting high refractive index layer with a refractive index of 1.447. It is demonstrated that the novel broadband antireflection coating with improved transmittance can be easily achieved by the nanoporous bilayer thin films described in present study.

  • PDF

Three-dimensional Nanoporous Graphene-based Materials and Their Applications (3차원 나노 다공성 그래핀의 제조와 응용)

  • Jung, Hyun;Kang, Yein
    • Ceramist
    • /
    • v.22 no.3
    • /
    • pp.243-255
    • /
    • 2019
  • Graphene, a two-dimensional material with a single atomic layer, has recently become a major research focus in various applications such as electronic devices, sensors, energy storage, catalysts, and adsorbents, because of its large theoretical surface area, excellent electrical conductivity, outstanding chemical stability, and good mechanical properties. Recently, 3D nanoporous graphene structures have received tremendous attention to expand the application of 2D graphene. Here, we overview the synthesis of 3D nanoporous graphene network structure with two-dimensional graphite oxide sheets, the control of porous parameters such as specific surface area, pore volume and pore size etc, and the modification of electronic structure by heteroatom doping along with its various applications. The 3D nanoporous graphene shows superior performance in diverse applications as a promising key material. Consequently, 3D nanoporous graphene can lead the future for advanced nanotechnology.

Fast Fabrication of Nanoporous Anodic Alumina Membrane by Hard Anodization (하드애노디제이션에 의한 나노다공질 양극산화 알루미나 멤브레인의 제조)

  • Ha, Yoon-Cheol;Jeong, Dae-Yeong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.429-429
    • /
    • 2009
  • Nanoporous anodic alumina membranes (NAAM) with high-density through-hole pores fabricated by hard anodization of aluminum in 0.3 M oxalic acid under the applied voltage of 40 (mild anodization), 80, 100, 120 and 140 V were investigated. The current-time responses monitored using a PC-controlled anodization cell and the corresponding pore structures attainable from field-enhanced scanning electron microscopy (FE-SEM) were analyzed in order to establish the optimum fabrication process. The nanoporous structure can be produced for all the voltage conditions, while the stabilized through-hole pore formation seems to occur at 40, 80 and 140 V. The growth rate under 140 V hard anodization was over 30 times higher than under 40 V mild anodization (1.5 um/hr).

  • PDF

The Model and Experiment for Heat Transfer Characteristics of Nanoporous Silica Aerogel

  • Mingliang, Zheng
    • Korean Journal of Materials Research
    • /
    • v.30 no.4
    • /
    • pp.155-159
    • /
    • 2020
  • Nanoporous silica aerogel insulation material is both lightweight and efficient; it has important value in the fields of aerospace, petrochemicals, electric metallurgy, shipbuilding, precision instruments, and so on. A theoretical calculation model and experimental measurement of equivalent thermal conductivity for nanoporous silica aerogel insulation material are introduced in this paper. The heat transfer characteristics and thermal insulation principle of aerogel nano are analyzed. The methods of SiO2 aerogel production are compared. The pressure range of SiO2 aerogel is 1Pa-atmospheric pressure; the temperature range is room temperature-900K. The pore diameter range of particle SiO2 aerogel is about 5 to 100 nm, and the average pore diameter range of about 20 ~ 40 nm. These results show that experimental measurements are in good agreement with theoretical calculation values. For nanoporous silica aerogel insulation material, the heat transfer calculation method suitable for nanotechnology can precisely calculate the equivalent thermal conductivity of aerogel nano insulation materials. The network structure is the reason why the thermal conductivity of the aerogel is very low. Heat transfer of materials is mainly realized by convection, radiation, and heat transfer. Therefore, the thermal conductivity of the heat transfer path in aerogel can be reduced by nanotechnology.

Effect of Dealloying Condition on the Formation of Nanoporous Structure in Melt-Spun Al60Ge30Mn10 Alloy

  • Kim, Kang Cheol;Kim, Won Tae;Kim, Do Hyang
    • Applied Microscopy
    • /
    • v.46 no.3
    • /
    • pp.160-163
    • /
    • 2016
  • Effect of dealloying condition on the formation of nanoporous structure in melt-spun $Al_{60}Ge_{30}Mn_{10}$ alloy has been investigated in the present study. In as-melt-spun $Al_{60}Ge_{30}Mn_{10}$ alloy spinodal decomposition occurs in the undercooled liquid during cooling, leading to amorphous phase separation. By immersing the as-melt-spun $Al_{60}Ge_{30}Mn_{10}$ alloy in 5 wt% HCl solution, Al-rich amorphous region is leached out, resulting in an interconnected nano-porous $GeO_x$ with an amorphous structure. The dealloying temperature strongly affects the whole dealloying process. At higher dealloying temperature, dissolution kinetics and surface diffusion/agglomeration rate become higher, resulting in the accelerated dealloying kinetics, i.e., larger dealloying depth and coarser pore-ligament structure.

Synthesis of Nanoporous F:SnO2 Materials and its Photovoltaic Characteristic (나노 다공질 FTO 제작 및 광전변환특성 고찰)

  • Han, Deok-Woo;Sung, Youl-Moon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.176-181
    • /
    • 2009
  • In this work, a new type of DSCs based on nanoporous FTO structure is being developed for research aimed at low-cost high-efficiency solar cell application. The nanoporous FTO materials have been prepared through the sol-gel combustion method followed by thermal treatment at $450{\sim}850[^{\circ}C]$. The properties of the nanoporous FTO materials were investigated by IR spectra, BET and TEM analyses, and the photovoltaic performance of the prepared DSCs were examined. It can be seen from the result that the nanoporous FTO exhibited good transparent conductive properties, well suited for DSCs application.

Pore Structure Characterization of Poly(vinylidene chloride)-Derived Nanoporous Carbons

  • Jung, Hwan Jung;Kim, Yong-Jung;Lee, Dae Ho;Han, Jong Hun;Yang, Kap Seung;Yang, Cheol-Min
    • Carbon letters
    • /
    • v.13 no.4
    • /
    • pp.236-242
    • /
    • 2012
  • Poly(vinylidene chloride) (PVDC)-derived nanoporous carbons were prepared by various activation methods: heat-treatment under an inert atmosphere, steam activation, and potassium hydroxide (KOH) activation at 873, 1073, and 1273 K. The pore structures of PVDC-derived nanoporous carbons were characterized by the $N_2$ adsorption technique at 77 K. Heat treatment in an inert atmosphere increased the specific surface area and micropore volume with elevating temperature, while the average micropore width near 0.65 nm was not significantly changed, reflecting the characteristic pore structure of ultramicroporous carbon. Steam activation for PVDC at 873 and 1073 K also yielded ultramicroporosity. On the other hand, the steam activated sample at 1273 K had a wider average micropore width of 1.48 nm, correlating with a supermicropore. The KOH activation increased the micropore volume with elevating temperature, which is accompanied by enlargement of the average micropore width from 0.67 to 1.12 nm. The average pore widths of KOH-activated samples were strongly governed by the activation temperature. We expect that these approaches can be utilized to simply control the porosity of PVDC-derived nanoporous carbons.

Formation of Nanoporous TiO2 Thin Films on Si by Anodic Oxidation (양극산화에 의한 나노다공성 TiO2 박막 생성)

  • Yoon, Yeo-Jun;Kim, Do-Hong;Jang, Ho-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.8
    • /
    • pp.655-659
    • /
    • 2010
  • Nanoporous titanium dioxide ($TiO_2$) is very attractive material for various applications due to the high surface to volume ratio. In this study, we have fabricated nanoporous $TiO_2$ thin films on Si by anodic oxidation. 500-nm-thick titanium (Ti) films were deposited on Si by using electron beam evaporation. Nanoporous structures in the Ti films were obtained by anodic oxidization using ethylene glycol electrolytes containing 0.3 wt% $NH_4F$ and 2 vol% $H_2O$ under an applied bias of 5 V. The diameter of nanopores in the Ti films linearly increased with anodization time and the whole Ti layer could become nanoporous after anodizing for 3 hours, resulting in vertically aligned nanotubes with the length of 200~300 nm and the diameter of 50~80 nm. Upon annealing at $600^{\circ}C$ in air, the anodized Ti films were fully crystallized to $TiO_2$ of rutile and anatase phases. We believe that our method to fabricate nanoporous $TiO_2$ films on Si is promising for applications to thin-film gas sensors and thin-film photovoltaics.

Fabrication of Nanoporous Alumina Mask and its Applications (나노다공성 알루미나 마스크의 제조 및 응용)

  • Jung, Mi;Choi, Jeong-Woo;Kim, Young-Kee;Oh, Byung-Ken
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.465-472
    • /
    • 2008
  • Fabrication of nanostructured materials and synthesis of nanomaterials have intensively studied to realize electronic devices for nanotechnology. By using nanoporous alumina mask, nanostructured material can be fabricated in the form of uniform array. The size and the density of the nanostructured materials can be controllable by changing the pore diameter and the density of the alumina mask. This method is possible low cost and on large scale process, and feasible to contribute the fusion technology consisting of information technology, nanotechnology, and biotechnology. Therefore, these techniques provide alternative approaches for development of new electronic applications. In this paper, the fabrication technique and its applications of nanoporous alumina mask are described and nanostructured materials such as quantum dots, nanoholes, and nanorods are introduced.