DOI QR코드

DOI QR Code

Characterization of Microstructure and Mechanical Properties of Mg-8Li-3Al-1Y Alloy Subjected to Different Rolling Processes

  • Zhou, Xiao (Key Laboratory of Nonferrous Metal Materials Science and Engineering of Ministry of Education, School of Materials Science and Engineering, Central South University) ;
  • Liu, Qiang (Key Laboratory of Nonferrous Metal Materials Science and Engineering of Ministry of Education, School of Materials Science and Engineering, Central South University) ;
  • Liu, Ruirui (Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Tongji University) ;
  • Zhou, Haitao (Key Laboratory of Nonferrous Metal Materials Science and Engineering of Ministry of Education, School of Materials Science and Engineering, Central South University)
  • Received : 2018.03.08
  • Accepted : 2018.05.07
  • Published : 2018.11.20

Abstract

The mechanical properties and microstructure evolution of Mg-8Li-3Al-1Y alloy undergoing different rolling processes were systematically investigated. X-ray diffraction, optical microscope, scanning electron microscopy, transmission electron microscopy as well as electron backscattered diffraction were used for tracking the microstructure evolution. Tensile testing was employed to characterize the mechanical properties. After hot rolling, the $MgLi_2Al$ precipitated in ${\beta}-Li$ matrix due to the transformation reaction: ${\beta}-Li{\rightarrow}{\beta}-Li+MgLi_2Al+{\alpha}-Mg$. As for the alloy subjected to annealed hot rolling, ${\beta}-Li$ phase was clearly recrystallized while recrystallization rarely occurred in ${\alpha}-Mg$ phase. With regard to the microstructure undergoing cold rolling, plenty of dislocations and dislocation walls were easily observed. In addition, the microstructure of alloys subjected to annealed cold rolling revealed the formation of new fresh ${\alpha}-Mg$ grains in ${\beta}-Li$ phase due to the precipitation reaction. The mechanical properties and fracture modes of Mg-8Li-3Al-1Y alloys can be effectively tuned by different rolling processes.

Keywords

Acknowledgement

Supported by : Hunan Provincial Natural Science Foundation of China

References

  1. W. Zhang, W. Xiao, F. Wang, C. Ma, J. Alloys Compd. 684, 8-14 (2016) https://doi.org/10.1016/j.jallcom.2016.05.137
  2. S.M. Kayhan, A. Tahmasebifar, M. Koc, Y. Usta, A. Tezcaner, Z. Evis, Mater. Des. 93, 397-408 (2016) https://doi.org/10.1016/j.matdes.2015.12.177
  3. V. Subravel, G. Padmanaban, V. Balasubramanian, Trans. Nonferrous Metals Soc China 24, 2776-2784 (2014) https://doi.org/10.1016/S1003-6326(14)63409-9
  4. M. Li, X. Lou, J. Kim, R. Wagoner, Int. J. Plast 26, 820-858 (2010) https://doi.org/10.1016/j.ijplas.2009.11.001
  5. H. Zhou, Q. Li, Z. Zhao, Z. Liu, S. Wen, Q. Wang, Mater. Sci. Eng. A 527, 2022-2026 (2010) https://doi.org/10.1016/j.msea.2009.12.009
  6. H. Zhou, X. Zeng, L. Liu, Y. Zhang, Y. Zhu, W. Ding, J. Mater. Sci. 39, 7061-7066 (2004) https://doi.org/10.1023/B:JMSC.0000047551.04037.fe
  7. G. Zhou, M.K. Jain, P. Wu, Y. Shao, D. Li, Y. Peng, Int. J. Plast 79, 19-47 (2016) https://doi.org/10.1016/j.ijplas.2015.12.006
  8. J. Yoon, S. Park, Mater. Des. 55, 300-308 (2014) https://doi.org/10.1016/j.matdes.2013.10.008
  9. J. Yoon, J. Lee, J. Lee, Mater. Sci. Eng. A 586, 306-312 (2013) https://doi.org/10.1016/j.msea.2013.08.031
  10. H. Zhou, X. Zeng, L. Liu, J. Dong, Q. Wang, W. Ding, Y. Zhu, Mater. Sci. Technol. 20, 1397-1402 (2004) https://doi.org/10.1179/026708304225022179
  11. L. Farbaniec, C. Williams, L. Kecskes, K. Ramesh, R. Becker, Int. J. Impact Eng. 98, 34-41 (2016) https://doi.org/10.1016/j.ijimpeng.2016.08.001
  12. F. Li, X. Zeng, Q. Chen, G. Cao, Mater. Des. 85, 389-395 (2015) https://doi.org/10.1016/j.matdes.2015.06.168
  13. H. Zhou, C. Liu, M. Chen, Mater. Sci. Technol. 22, 597-603 (2006) https://doi.org/10.1179/174328406X84030
  14. X. Zhou, R. Liu, H. Zhou, W. Jiang, J. Mater. Eng. Perform. 26, 2423-2429 (2017) https://doi.org/10.1007/s11665-017-2670-2
  15. M. Karami, R. Mahmudi, Metall. Mater. Trans. A 44, 3934-3946 (2013) https://doi.org/10.1007/s11661-013-1699-6
  16. F. Kang, Z. Li, J.T. Wang, P. Cheng, H.Y. Wu, J. Mater. Sci. 47, 7854-7859 (2012) https://doi.org/10.1007/s10853-012-6344-z
  17. B. Pourbahari, H. Mirzadeh, M. Emamy, J. Mater. Eng. Perform. 27, 1327-1333 (2018) https://doi.org/10.1007/s11665-018-3238-5
  18. B. Pourbahari, H. Mirzadeh, M. Emamy, Mater. Sci. Eng. A 680, 39-46 (2017) https://doi.org/10.1016/j.msea.2016.10.084
  19. B. Pourbahari, M. Emamy, H. Mirzadeh, Prog. Nat. Sci. Mater. Int. 27, 228-235 (2017) https://doi.org/10.1016/j.pnsc.2017.02.004
  20. Y. Ali, D. Qiu, B. Jiang, F. Pan, M.-X. Zhang, J. Alloys Compd. 619, 639-651 (2015) https://doi.org/10.1016/j.jallcom.2014.09.061
  21. D. Vinotha, K. Raghukandan, U. Pillai, B. Pai, Trans. Indian Inst. Metals 62, 521-532 (2009) https://doi.org/10.1007/s12666-009-0088-8
  22. P. Cao, M. Qian, D.H. StJohn, Scr. Mater. 54, 1853-1858 (2006) https://doi.org/10.1016/j.scriptamat.2006.02.020
  23. D.H. StJohn, M. Qian, M.A. Easton, P. Cao, Z. Hildebrand, Metall. Mater. Trans. A 36, 1669-1679 (2005) https://doi.org/10.1007/s11661-005-0030-6
  24. P. Cao, M. Qian, D.H. StJohn, Scr. Mater. 53, 841-844 (2005) https://doi.org/10.1016/j.scriptamat.2005.06.010
  25. H.W. Chang, D. Qiu, J.A. Taylor, M.A. Easton, M.X. Zhang, J. Magnes. Alloys 1, 115-121 (2013) https://doi.org/10.1016/j.jma.2013.07.006
  26. B. Pourbahari, H. Mirzadeh, M. Emamy, J. Mater. Res. 32, 4186-4195 (2017) https://doi.org/10.1557/jmr.2017.415
  27. B. Jiang, W. Liu, D. Qiu, M.-X. Zhang, F. Pan, Mater. Chem. Phys. 133, 611-616 (2012) https://doi.org/10.1016/j.matchemphys.2011.12.087
  28. M. Sun, X. Hu, L. Peng, P. Fu, Y. Peng, Mater. Sci. Eng. A 620, 89-96 (2015) https://doi.org/10.1016/j.msea.2014.09.106
  29. Y. Zhou, L. Bian, G. Chen, L. Wang, W. Liang, J. Alloys Compd. 664, 85-91 (2016) https://doi.org/10.1016/j.jallcom.2015.12.198
  30. J. Zhang, Y. Zhang, G. Wu, W. Liu, L. Zhang, W. Ding, Mater. Sci. Eng. A 621, 198-203 (2015) https://doi.org/10.1016/j.msea.2014.10.076
  31. H.-T. Son, Y.-H. Kim, D.-W. Kim, J.-H. Kim, H.-S. Yu, J. Alloys Compd. 564, 130-137 (2013) https://doi.org/10.1016/j.jallcom.2013.02.157
  32. C. Guo, F. Jiang, R. Wu, M. Zhang, Mater. Des. 49, 110-115 (2013) https://doi.org/10.1016/j.matdes.2013.01.049
  33. T. Al-Samman, Acta Mater. 57, 2229-2242 (2009) https://doi.org/10.1016/j.actamat.2009.01.031
  34. M. Lin, C. Tsai, J. Uan, Scr. Mater. 56, 597-600 (2007) https://doi.org/10.1016/j.scriptamat.2006.12.017
  35. D. Hanwu, W. Limin, L. Ke, W. Lidong, J. Bin, P. Fusheng, Mater. Des. 90, 157-164 (2016) https://doi.org/10.1016/j.matdes.2015.10.111
  36. G. Sha, X. Sun, T. Liu, Y. Zhu, T. Yu, J. Mater. Sci. Technol. 27, 753-758 (2011) https://doi.org/10.1016/S1005-0302(11)60138-2
  37. Y. Yang, X. Peng, H. Wen, G. Wei, W. Xie, E.J. Lavernia, Mater. Sci. Eng. A 611, 1-8 (2014) https://doi.org/10.1016/j.msea.2014.05.064
  38. Y. Zou, L. Zhang, H. Wang, X. Tong, M. Zhang, Z. Zhang, J. Alloys Compd. 669, 72-78 (2016) https://doi.org/10.1016/j.jallcom.2016.01.174
  39. M. Karami, R. Mahmudi, Mater. Sci. Eng. A 636, 493-501 (2015) https://doi.org/10.1016/j.msea.2015.04.002
  40. M. Karami, R. Mahmudi, Mater. Sci. Eng. A 607, 512-520 (2014) https://doi.org/10.1016/j.msea.2014.04.040
  41. Q. Peng, H. Zhou, F. Zhong, H. Ding, X. Zhou, R. Liu, T. Xie, Y. Peng, Mater. Des. 66, 566-574 (2015) https://doi.org/10.1016/j.matdes.2014.03.046
  42. H. Dong, F. Pan, B. Jiang, Y. Zeng, Mater. Des. 57, 121-127 (2014) https://doi.org/10.1016/j.matdes.2013.12.055
  43. J. Zhao, J. Zhang, W. Liu, G. Wu, L. Zhang, Mater. Sci. Eng. A 650, 240-247 (2016) https://doi.org/10.1016/j.msea.2015.10.067
  44. Y. Zhang, J. Zhang, G. Wu, W. Liu, L. Zhang, W. Ding, Mater. Des. 1980-2015(66), 162-168 (2015)
  45. X. Guo, R. Wu, J. Zhang, B. Liu, M. Zhang, Mater. Des. 53, 528-533 (2014) https://doi.org/10.1016/j.matdes.2013.07.011
  46. Y. Estrin, S. Nene, B. Kashyap, N. Prabhu, T. Al-Samman, Mater. Lett. 173, 252-256 (2016) https://doi.org/10.1016/j.matlet.2016.03.052
  47. T. Zhu, J. Sun, C. Cui, R. Wu, S. Betsofen, Z. Leng, J. Zhang, M. Zhang, Mater. Sci. Eng. A 600, 1-7 (2014) https://doi.org/10.1016/j.msea.2014.02.017
  48. Z. Chen, Z. Dong, C. Yu, R. Tong, Mater. Sci. Eng. A 559, 651-654 (2013) https://doi.org/10.1016/j.msea.2012.09.005
  49. J. Su, A.S.H. Kabir, M. Sanjari, S. Yue, Mater. Sci. Eng. A 674, 343-360 (2016) https://doi.org/10.1016/j.msea.2016.07.107
  50. H. Borkar, M. Pekguleryuz, Metall. Mater. Trans. A 46, 488-495 (2015) https://doi.org/10.1007/s11661-014-2636-z
  51. H. Mirzadeh, M. Roostaei, M. Parsa, R. Mahmudi, Mater. Des. 68, 228-231 (2015) https://doi.org/10.1016/j.matdes.2014.12.020
  52. L. Tong, X. Li, D. Zhang, L. Cheng, J. Meng, H. Zhang, Mater. Charact. 92, 77-83 (2014) https://doi.org/10.1016/j.matchar.2014.03.006
  53. H. Mirzadeh, Mech. Mater. 77, 80-85 (2014) https://doi.org/10.1016/j.mechmat.2014.07.004
  54. T. Al-Samman, G. Gottstein, Mater. Sci. Eng. A 490, 411-420 (2008) https://doi.org/10.1016/j.msea.2008.02.004
  55. R. Wu, X. Guo, D. Li, J. Alloys Compd. 616, 408-412 (2014) https://doi.org/10.1016/j.jallcom.2014.07.082
  56. R. Wu, Z. Qu, M. Zhang, Mater. Sci. Eng. A 516, 96-99 (2009) https://doi.org/10.1016/j.msea.2009.04.025
  57. J. Zhao, Z. Li, W. Liu, J. Zhang, L. Zhang, Y. Tian, G. Wu, Mater. Sci. Eng. A 669, 87-94 (2016) https://doi.org/10.1016/j.msea.2016.05.085
  58. H.-M. Yang, N.-Y. Zhang, N. Liu, W.-D. Xie, X.-D. Peng, Rare Metals 35, 374-379 (2016) https://doi.org/10.1007/s12598-014-0227-1
  59. A. Zhang, H. Hai, L. Xiaoteng, X. Zhang, J. Rare Earths 32, 451-457 (2014) https://doi.org/10.1016/S1002-0721(14)60093-4
  60. T. Liu, S. Wu, S. Li, P. Li, Mater. Sci. Eng. A 460, 499-503 (2007)
  61. T. Liu, Y. Wang, S. Wu, R.L. Peng, C. Huang, C. Jiang, S. Li, Scr. Mater. 51, 1057-1061 (2004) https://doi.org/10.1016/j.scriptamat.2004.08.007
  62. P. Xiaodong, L. Junchen, L. Wenjuan, Y. Yan, W. Qunyi, Rare Metal Mater. Eng. 42, 1993-1998 (2013) https://doi.org/10.1016/S1875-5372(14)60013-8
  63. A. Alamo, A. Banchik, J. Mater. Sci. 15, 222-229 (1980) https://doi.org/10.1007/BF00552448
  64. L. Junwei, P. Xiaodong, W. Bao, W. Guobing, X. Weidong, Y. Yan, L. Mingpu, J. Rare Earths 34, 626-631 (2016) https://doi.org/10.1016/S1002-0721(16)60071-6
  65. L.-N. Zhang, R. Jia, D. Li, W. Zhang, F. Guo, J. Mater. Sci. Technol. 31, 504-511 (2015) https://doi.org/10.1016/j.jmst.2014.09.018
  66. C. Zhang, P. Han, Z. Zhang, M. Dong, L. Zhang, X. Gu, Y. Yang, B. Xu, J. Mol. Model. 18, 1123-1127 (2012) https://doi.org/10.1007/s00894-011-1049-9
  67. M. Eddahbi, P. Pérez, M. Monge, G. Garcés, R. Pareja, P. Adeva, J. Alloys Compd. 473, 79-86 (2009) https://doi.org/10.1016/j.jallcom.2008.05.064
  68. Y. Zhao, X. Liao, Z. Jin, R. Valiev, Y.T. Zhu, Acta Mater. 52, 4589-4599 (2004) https://doi.org/10.1016/j.actamat.2004.06.017
  69. F. Cao, F. Xia, H. Hou, H. Ding, Z. Li, Mater. Sci. Eng. A 637, 89-97 (2015) https://doi.org/10.1016/j.msea.2015.03.127
  70. S. Fatemi, A. Zarei-Hanzaki, H. Paul, J. Alloys Compd. 699, 796-802 (2017) https://doi.org/10.1016/j.jallcom.2016.12.424
  71. Z.-Y. Liu, T.-T. Huang, W.-J. Liu, S. Kang, Trans. Nonferrous Metals Soc China 26, 378-389 (2016) https://doi.org/10.1016/S1003-6326(16)64126-2
  72. J. Liu, Z.-S. Cui, L.-Q. Ruan, Mater. Sci. Eng. A 529, 300-310 (2011) https://doi.org/10.1016/j.msea.2011.09.032
  73. I. Salvatori, T. Inoue, K. Nagai, ISIJ Int. 42, 744-750 (2002) https://doi.org/10.2355/isijinternational.42.744
  74. Y.-H. Kim, J.-H. Kim, H.-S. Yu, J.-W. Choi, H.-T. Son, J. Alloys Compd. 583, 15-20 (2014) https://doi.org/10.1016/j.jallcom.2013.08.154
  75. V. Kumar, R. Shekhar, R. Balasubramaniam, K. Balani, Mater. Sci. Eng. A 547, 38-50 (2012) https://doi.org/10.1016/j.msea.2012.03.074
  76. Y. Yoshida, L. Cisar, S. Kamado, Y. Kojima, Mater. Trans. 43, 2419-2423 (2002) https://doi.org/10.2320/matertrans.43.2419
  77. A. Yamamoto, T. Ashida, Y. Kouta, K.B. Kim, S. Fukumoto, H. Tsubakino, Mater. Trans. 44, 619-624 (2003) https://doi.org/10.2320/matertrans.44.619
  78. N. Saito, M. Mabuchi, M. Nakanishi, K. Kubota, K. Higashi, Scr. Mater. 36, 1249 (1997) https://doi.org/10.1016/S1359-6462(97)00026-2

Cited by

  1. Compressive Deformation Behavior of AZ31Mg Alloy Containing {10-12} Extension Twins at Different Temperature vol.25, pp.5, 2018, https://doi.org/10.1007/s12540-019-00275-6
  2. Selective Extraction of Cu(II) from Sulfuric Acid Leaching Solutions of Spent Lithium Ion Batteries Using Cyanex 301 vol.57, pp.9, 2018, https://doi.org/10.3365/kjmm.2019.57.9.596
  3. Mechanical Behavior of As-Cast and Extruded Mg-Si-Ni-Ca Magnesium Alloys vol.29, pp.11, 2018, https://doi.org/10.1007/s11665-020-05229-3