DOI QR코드

DOI QR Code

Envelope development and variation in Trachelomonas hispida (Euglenophyta)

  • Poniewozik, Malgorzata (Department of Plant Physiology and Biotechnology, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin) ;
  • Zieba, Emil (Laboratory of Confocal and Electron Microscopy, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin) ;
  • Sajnaga, Ewa (Laboratory of Biocontrol, Production and Application of Entomopathogenic Nematodes, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin)
  • Received : 2018.03.20
  • Accepted : 2018.11.09
  • Published : 2018.12.15

Abstract

In Trachelomonas hispida, the adult envelope that surrounds the monad is oval in shape and covered with spines. Development of the lorica is an interesting, but poorly known phenomenon. We observed in detail the formation of spineless envelopes of T. hispida using light microscopy and scanning electron microscopy. The results showed that young cells formed delicate and net-like envelopes. The structure changed with age, and mature specimens had solid, thick loricae with small pores. As the loricae aged, they changed their shape, and rope-like fibres from the external layer started to unwind, progressing from the apical pore, exposing the underlying net-like structure. X-ray spectrometry showed that Fe was the major mineral component in young and mature loricae, whereas old loricae did not contain Fe salts, although they did contain a high number of Mn compounds. We also noticed a different pattern of mineralization process in the envelopes. Apart from the even distribution of mineral deposition over the entire lorica, we observed that it started from the apical pore and ended at the posterior end. There was considerable morphological variation in envelope shape and ornamentation, which had collars and folds around the apical pore and process at the posterior end. This suggested that many varieties of T. hispida should be taxonomically reappraised. We also discuss a hypothetical role for the spines on lorica surfaces in aquatic ecosystems.

Keywords

References

  1. Bilan, M. I. & Usov, A. I. 2001. Polysaccharides of calcareous algae and their effect on the calcification process. Russ. J. Bioorg. Chem. 27:2-16. https://doi.org/10.1023/A:1009584516443
  2. Bozzola, J. J. & Russell, L. D. 1995. Electron microscopy: principles and techniques for biologists. Jones and Bartlett, Boston, MA, 542 pp.
  3. Brosnan, S., Brown, P. J. P., Farmer, M. A. & Triemer, R. E. 2005. Morphological separation of the euglenoid genera Trachelomonas and Strombomonas (Euglenophyta) based on lorica development and posterior strip reduction. J. Phycol. 41:590-605. https://doi.org/10.1111/j.1529-8817.2005.00068.x
  4. Conforti, V. 1999. A taxonomic and ultrastructural study of Trachelomonas Ehr. (Euglenophyta) from subtropical Argentina. Cryptogam. Algol. 20:167-207. https://doi.org/10.1016/S0181-1568(99)80014-2
  5. Conforti, V. 2010. Ultrastructure of the lorica of species (Euglenophyta) from New Jersey, USA. Algol. Stud. 135:15-40. https://doi.org/10.1127/1864-1318/2010/0135-0015
  6. Conforti, V., Walne, P. L. & Dunlap, J. R. 1994. Comparative ultrastructure and elemental composition of envelopes of Trachelomonas and Strombomonas (Euglenophyta). Acta Protozool. 33:71-78.
  7. Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. 2012. jModeltest2: more models, new heuristics and parallel computing. Nat. Methods 9:772.
  8. Dillard, G. E. 2000. Freshwater algae of the Southeastern United States. Part 7: Pigmented Euglenophyceae. Bibliotheca Phycologica. J. Cramer, Berlin, 135 pp.
  9. Donnelly Barnes, L. S., Walne, P. L. & Dunlap, J. R. 1986. Cytological and taxonomic studies of the Euglenales. I. Ultrastructure and envelope elemental composition in Trachelomonas. Br. Phycol. J. 21:387-397. https://doi.org/10.1080/00071618600650451
  10. Duangjan, K. & Wolowski, K. 2013. New taxa of loricate euglenoids Strombomonas and Trachelomonas from Thailand. Pol. Bot. J. 58:337-345.
  11. Dunlap, J. R. & Walne, P. L. 1985. Fine structure and biomineralization of the mucilage envelopes of Trachelomas lefevrei (Euglenophyceae). J. Protozool. 32:437-441. https://doi.org/10.1111/j.1550-7408.1985.tb04040.x
  12. Dunlap, J. R. & Walne, P. L. 1987. Variations in envelope morphology and mineralization in Trachelomonas lefevrei (Euglenophyceae). J. Phycol. 23:556-564.
  13. Dunlap, J. R., Walne, P. L. & Bentley, J. 1983. Microarchitecture and elemental spatial segregation of envelopes of Trachelomonas lefevrei (Euglenophyceae). Protoplasma 117:97-106. https://doi.org/10.1007/BF01288348
  14. Dunlap, J. R., Walne, P. L. & Kivic, P. A. 1986. Cytological and taxonomic studies of the Euglenales. II. Comparative microarchitecture and cytochemistry of envelopes of Strombomonas and Trachelomonas. Br. Phycol. J. 21:399-405. https://doi.org/10.1080/00071618600650461
  15. Ellegaard, M., Lenau, T., Lundholm, N., Maibohm, C., Friis, S. M. M., Rottwitt, K. & Su, Y. 2016. The fascinating diatom frustules: can it play a role for attenuation of UV radiation? J. Appl. Phycol. 28:3295-3306. https://doi.org/10.1007/s10811-016-0893-5
  16. Francillon-Vieillot, H., De Buffrenil, V., Castanet, J., Geraudie, J., Meunier, F. J., Sire, J. Y., Zylberberg, L. & De Ricqles, A. 1990. Microstructure and mineralization of vertebrate skeletal tissues. In Carter, J. G. (Ed.) Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends. Vol. 1. Van Nostrand Reinhold, New York, pp. 471-530.
  17. Hall, T. A. 2011. BioEdit: An important software for molecular biology. GERF Bull. Biosci. 2:60-61.
  18. Hamm, C. E., Merkel, R., Springer, O., Jurkojc, P., Maier, C., Prechtel, K. & Smetacek, V. 2003. Architecture and material properties of diatom shells provide effective mechanical protection. Nature 421:841-843. https://doi.org/10.1038/nature01416
  19. Hildebrand, M. & Lerch, S. J. 2015. Diatom silica biomineralization: parallel development of approaches and understanding. Semin. Cell Dev. Biol. 46:27-35. https://doi.org/10.1016/j.semcdb.2015.06.007
  20. Kim, J. -T., Shin, W. & Boo, S. -M. 1999. A taxonomic reappraisal of Trachelomonas hispida (Euglenophyceae) from Korean Inland waters. Algae 14:1-7.
  21. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16:111-120. https://doi.org/10.1007/BF01731581
  22. Leedale, G. F. 1975. Envelope formation and structure in the euglenoid genus Trachelomonas. Br. Phycol. J. 10:17-41. https://doi.org/10.1080/00071617500650031
  23. Lukomska-Kowalczyk, M., Karnkowska, A., Krupska, M., Milanowski, R. & Zakrys, B. 2016. DNA barcoding in autotrophic euglenids: evaluation of COI and 18S rDNA. J. Phycol. 52:951-960. https://doi.org/10.1111/jpy.12439
  24. Lurling, M. & Van Donk, E. 2000. Grazer-induced colony formation in Scenedesmus: are there costs to being colonial? Oikos 88:111-118. https://doi.org/10.1034/j.1600-0706.2000.880113.x
  25. Milligan, A. J. & Morel, F. M. M. 2002. A proton buffering role for silica in diatoms. Science 297:1848-1850. https://doi.org/10.1126/science.1074958
  26. Mitchell, J. G., Seuront, L., Doubell, M. J., Losic, D., Voelcker, N. H., Seymour, J. & Lal, R. 2013. The role of diatom nanostructures in biasing diffusion to improve uptake in a patchy nutrient environment. PLoS ONE 8:e59548. https://doi.org/10.1371/journal.pone.0059548
  27. Muller, W. E. G. 2012. Silicon biomineralization: biology-biochemistry-molecular biology-biotechnology. Springer Science & Business Media, Berlin, 340 pp.
  28. Padisak, J., Soroczki-Pinter, E. & Rezner, Z. 2003. Sinking properties of some phytoplankton shapes and the relation of form resistance to morphological diversity of plankton: an experimental study. Hydrobiologia 500:243-257. https://doi.org/10.1023/A:1024613001147
  29. Pentecost, A. 1991. Calcification processes in algae and cyanobacteria. In Riding, R. (Ed.) Calcareous Algae and Stromatolites. Springer, Berlin, pp. 3-20.
  30. Pereira, M. J. & Azeiteiro, U. M. M. 2003. Structure, organization and elemental composition of the envelopes of Trachelomonas (Euglenophyta): a review. Acta Oecol. 24(Suppl. 1):S57-S66. https://doi.org/10.1016/S1146-609X(03)00017-1
  31. Pereira, M. J., Azeiteiro, U. M. M., Gonçalves, F. & Soares, A. M. V. M. 2003. Inorganic composition of the envelopes of Trachelomonas Ehr. (Euglenophyta). Acta Oecol. 24(Suppl. 1):S317-S324. https://doi.org/10.1016/S1146-609X(03)00027-4
  32. Playfair, G. I. 1915. The genus Trachelomonas. Proc. Linn. Soc. N. S. W. 40:1-41.
  33. Poniewozik, M. 2016. The euglenoid genus Trachelomonas (Euglenophyta) from eastern Poland: study on morphology and ultrastructure of envelopes with comments on morphologically similar species. Phytotaxa 278:181-211. https://doi.org/10.11646/phytotaxa.278.3.1
  34. Poniewozik, M. 2017. Element composition of Trachelomonas envelopes (Euglenophyta). Pol. Bot. J. 62:77-85.
  35. Poniewozik, M., Wolowski, K. & Piątek, J. 2018. Trachelomonas volzii vs T. dubia (Euglenophyceae): one or two separate species? Study on similarities and differences of the species. Phytotaxa 357:1-16. https://doi.org/10.11646/phytotaxa.357.1.1
  36. Preisig, H. R. 1994. Siliceous structures and silicification in flagellated protists. In Wetherbee, R., Pickett-Heaps, J. D. & Andersen, R. A. (Eds.) The Protistan Cell Surface. Springer, Vienna, pp. 29-42.
  37. Pringsheim, E. G. 1953. Observations on some species of Trachelomonas grown in culture. New Phytol. 52:238-266. https://doi.org/10.1111/j.1469-8137.1953.tb07514.x
  38. Raven, J. A. & Waite, A. M. 2004. The evolution of silicification in diatoms: inescapable sinking and sinking as escape? New Phytol. 162:45-61. https://doi.org/10.1111/j.1469-8137.2004.01022.x
  39. Reynolds, C. S. 2007. Variability in the provision and function of mucilage in phytoplankton: facultative responses to the environment. Hydrobiologia 578:37-45. https://doi.org/10.1007/s10750-006-0431-6
  40. Sandgren, C. D., Hall, S. A. & Barlow, S. B. 1996. Siliceous scale production in chrysophyte and synurophyte algae. I. Effects of silica-limited growth on cell silica content, scale morphology, and the construction of the scale layer of Synura petersenii. J. Phycol. 32:675-692. https://doi.org/10.1111/j.0022-3646.1996.00675.x
  41. Shubert, E., Wilk-Wozniak, E. & Ligeza, S. 2014. An autecological investigation of Desmodesmus: implications for ecology and taxonomy. Plant Ecol. Evol. 147:202-212. https://doi.org/10.5091/plecevo.2014.902
  42. Skvortsov, B. W. 1919. Notes on the agriculture botany and zoology of China. XXXI. On new Flagellate from Manchuria. J. North China Branch R. Asiat. Soc. 50:96-104.
  43. Solorzano, G. G., Martinez, M. G. O., Vazquez, A. L., Garfias, M. B. M., Zuniga, R. E. Q. & Conforti, V. 2011. Trachelomonas (Euglenophyta) from a eutrophic reservoir in Central Mexico. J. Environ. Biol. 32:463-471.
  44. Starmach, K. 1983. Euglenophyta - Eugleniny. Flora Slodkowodna Polski. Part 3. Panstwowe Wydawnictwo Naukowe. Warszawa, Krakow, 563 pp.
  45. Sviben, S., Kepcija, R. M., Vidakovic-Cifrek, Z., Peric, M. S., Kruzic, P., Popijac, A. & Primc, B. 2018. Chara spp. exhibit highly heterogeneous light adaptation, calcite encrustation and epiphyton patterns in a marl lake. Aquat. Bot. 147:1-10. https://doi.org/10.1016/j.aquabot.2018.01.007
  46. Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30:2725-2729. https://doi.org/10.1093/molbev/mst197
  47. Thompson, A. S., Rhodes, J. C. & Pettman, I. 1988. Natural Environmental Research Council. Culture collection of algae and protozoa: catalogue of strains. Freshwater Biology Association (U.K.), Ambleside, 22 pp.
  48. Wang, Q. -X., Liu, H. -J., Yu, J., Sun, S. -Q., Zhang, D. -W. & Bao, W. -M. 2003. Comparative studies on the fine structure and elemental composition of envelopes of Trachelomonas and Strombomonas (Euglenophyta). Acta Bot. Sin. 45:601-607.
  49. West, L. K. & Walne, P. L. 1980. Trachelomonas hispida var. coronata (Euglenophyceae). II. Envelope substructure. J. Phycol. 16:498-506. https://doi.org/10.1111/j.1529-8817.1980.tb03067.x
  50. West, L. K., Walne, P. L. & Bentley, J. 1980a. Trachelomonas hispida var. coronata (Euglenophyceae). III. Envelope elemental composition and mineralization. J. Phycol. 16:582-591. https://doi.org/10.1111/j.1529-8817.1980.tb03077.x
  51. West, L. K., Walne, P. L. & Rosowski, J. R. 1980b. Trachelomonas hispida var. coronata (Euglenophyceae). I. Ultrastructure of cytoskeletal and flagellar systems. J. Phycol. 16:489-497. https://doi.org/10.1111/j.1529-8817.1980.tb03066.x
  52. Wolowski, K. 1998. Taxonomic and environmental studies on euglenophytes of the Krakow-Czestochowa Upland (Southern Poland). Fragm. Florist Geobot. Pol. 6:1-192.
  53. Wolowski, K. & Hindak, F. 2003. Atlas of Euglenophytes. VEDA, Publishing House of the Slovak Academy of Sciences, Bratislava, 136 pp.
  54. Wolowski, K., Poniewozik, M. & Juran, J. 2016. Morphological variability of loricae in Trachelomonas caudata complex (Euglenophyta). Cryptogam. Algol. 37:97-108. https://doi.org/10.7872/crya/v37.iss2.2016.97
  55. Wolowski, K. & Walne, P. L. 2007. Strombomonas and Trachelomonas species (Euglenophyta) from south-eastern USA. Eur. J. Phycol. 42:409-431. https://doi.org/10.1080/09670260701702508