DOI QR코드

DOI QR Code

Polyphasic delimitation of a filamentous marine genus, Capillus gen. nov. (Cyanobacteria, Oscillatoriaceae) with the description of two Brazilian species

  • Caires, Taiara A. (Programa de Pos-Graduacao em Botanica, Universidade Estadual de Feira de Santana) ;
  • Lyra, Goia de M. (Laboratorio de Algas Marinhas (LAMAR), Instituto de Biologia, Universidade Federal da Bahia) ;
  • Hentschke, Guilherme S. (Universidade Luterana do Brasil (ULBRA)) ;
  • da Silva, Aaron Matheus S. (Laboratorio de Algas Marinhas (LAMAR), Instituto de Biologia, Universidade Federal da Bahia) ;
  • de Araujo, Valter L. (Laboratorio de Algas Marinhas (LAMAR), Instituto de Biologia, Universidade Federal da Bahia) ;
  • Sant'Anna, Celia L. (Instituto de Botanica, Nucleo de Pesquisa em Ficologia) ;
  • Nunes, Jose Marcos de C. (Laboratorio de Algas Marinhas (LAMAR), Instituto de Biologia, Universidade Federal da Bahia)
  • Received : 2017.10.08
  • Accepted : 2018.11.25
  • Published : 2018.12.15

Abstract

Lyngbya C. Agardh ex Gomont is a nonheterocytous cyanobacterial genus whose evolutionary history is still poorly known. The traditionally defined Lyngbya has been demonstrated to be polyphyletic, including at least five distinct clades, some of which have been proposed as new genera. Intraspecific diversity is also clearly underestimated in Lyngbya due to the lack of unique morphological characters to differentiate species. In this study, we describe the new genus Capillus T. A. Caires, C. L. Sant'Anna et J. M. C. Nunes from benthic marine environments, including two new Brazilian species (here described as C. salinus T. A. Caires, C. L. Sant'Anna et J. M. C. Nunes, and C. tropicalis T. A. Caires, C. L. Sant'Anna et J. M. C. Nunes), and two species yet to be described, one of them from India (Capillus sp. 2.1), and the other from United States of America, based on strain PCC 7419. Capillus species presented cross-wise diagonal fragmentation, assisted or not by necridic cells, which has not been previously mentioned for Lyngbya. Ultrastructural analyses showed that C. salinus and C. tropicalis have numerous gas vesicles, which are rarely described for benthic marine species. The new genus formed a well-supported clade, and the D1-D1' and Box B secondary structures of internal transcribed spacer also supported the proposal of its new species. These findings help to clarify the diversity of species in the Lyngbya complex and the taxonomy of the group, and highlight the need of further floristic surveys in tropical coastal environments, which remain poorly studied.

Keywords

References

  1. Baeta-Neves, M. H. C. 1991. Estudo das Cianoficeas Marinhas Bentonicas da Regiao de Cabo Frio (Estado do Rio de Janeiro, Brasil). II-Hormogonae. Rev. Bras. Biol. 52:641-659.
  2. Birnboim, H. C. & Doly, J. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7:1513-1518. https://doi.org/10.1093/nar/7.6.1513
  3. Boyer, S. L., Flechtner, V. R. & Johansen, J. R. 2001. Is the 16S-23S rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in cyanobacteria. Mol. Biol. Evol. 18:1057-1069. https://doi.org/10.1093/oxfordjournals.molbev.a003877
  4. Boyer, S. L., Johansen, J. R., Flechtner, V. R. & Howard, G. L. 2002. Phylogeny and genetic variance in terrestrial Microcoleus (Cyanophyceae) species based on sequence analysis of the 16S rRNA gene and associated 16S-23S ITS region. J. Phycol. 38:1222-1235. https://doi.org/10.1046/j.1529-8817.2002.01168.x
  5. Brito, A., Ramos, V., Mota, R., Lima, S., Santos, A., Vieira, J., Vieira, C. P., Kastovsky, J., Vasconcelos, V. M. & Tamagnini, P. 2017. Description of new genera and species of marine cyanobacteria from the Portuguese Atlantic coast. Mol. Phylogenet. Evol. 111:18-34. https://doi.org/10.1016/j.ympev.2017.03.006
  6. Caires, T. A., de Mattos Lyra, G., Hentschke, G. S., de Gusmao Pedrini, A., Sant'Anna, C. L. & de Castro Nunes, J. M. 2018. Neolyngbya gen. nov. (Cyanobacteria, Oscillatoriaceae): a new filamentous benthic marine taxon widely distributed along the Brazilian Coast. Mol. Phylogenet. Evol. 120:196-211. https://doi.org/10.1016/j.ympev.2017.12.009
  7. Caires, T. A., Sant'Anna, C. L. & de Castro Nunes, J. M. C. 2013. A new species of marine benthic cyanobacteria from the infralittoral of Brazil: Symploca infralitoralis sp. nov. Braz. J. Bot. 36:159-163. https://doi.org/10.1007/s40415-013-0017-2
  8. Castenholz, R. W., Rippka, R. & Herdman, M. 2001. Formgenus VII. Lyngbya. Oxygenic photosynthetic bacteria. In Boone, D. R., Castenholz, R. W. & Garrity, G. M. (Eds.) Bergey's Manual of Systematic Bacteriology. Springer, New York, pp. 473-599.
  9. Crispino, L. M. B. & Sant'Anna, C. L. 2006. Cianobacterias marinhas bentonicas de ilhas costeiras do Estado de Sao Paulo, Brasil. Rev. Bras. Bot. 29:639-656.
  10. Drummond, A. J., Ashton, B., Buxton, S., Cheung, M., Cooper, A., Duran, C., Field, M., Heled, J., Kearse, M., Markowitz, S., Moir, R., Stones-Havas, S., Sturrock, S., Thierer, T. & Wilson, A. 2011. Geneious v6.0.6. Available from: http://www.geneious.com. Accessed Oct 8, 2017.
  11. Engene, N., Choi, H., Esquenazi, E., Rottacker, E. C., Ellisman, M. H., Dorrestein, P. C. & Gerwick, W. H. 2011. Underestimated biodiversity as a major explanation for the perceived rich secondary metabolite capacity of the cyanobacterial genus Lyngbya. Environ. Microbiol. 13:1601-1610. https://doi.org/10.1111/j.1462-2920.2011.02472.x
  12. Engene, N., Coates, R. C. & Gerwick, W. H. 2010. 16S rRNA gene heterogeneity in the filamentous marine cyanobacterial genus Lyngbya. J. Phycol. 46:591-601. https://doi.org/10.1111/j.1529-8817.2010.00840.x
  13. Engene, N., Gunasekera, S. P., Gerwick, W. H. & Paul, V. J. 2013. Phylogenetic inferences reveal a large extent of novel biodiversity in chemically rich tropical marine cyanobacteria. Appl. Environ. Microbiol. 79:1882-1888. https://doi.org/10.1128/AEM.03793-12
  14. Engene, N., Rottacker, E. C., Kastovsky, J., Byrum, T., Choi, H., Ellisman, M. H., Komarek, J. & Gerwick, W. H. 2012. Moorea producens gen. nov., sp. nov. and Moorea bouillonii comb. nov., tropical marine cyanobacteria rich in bioactive secondary metabolites. Int. J. Syst. Evol. Microbiol. 62(Pt. 5):1171-1178. https://doi.org/10.1099/ijs.0.033761-0
  15. Fiore, M. F., Moon, D. H., Tsai, S. M., Lee, H. & Trevors, J. T. 2000. Miniprep DNA isolation from unicellular and filamentous cyanobacteria. J. Microbiol. Methods 39:159-169. https://doi.org/10.1016/S0167-7012(99)00110-4
  16. Genuario, D. B., Vaz, M. G. M. V., Hentschke, G. S., Sant'Anna, C. L. & Fiore, M. F. 2015. Halotia gen. nov., a phylogenetically and physiologically coherent cyanobacterial genus isolated from marine coastal environments. Intern. J. Syst. Evol. Microbiol. 65:663-675. https://doi.org/10.1099/ijs.0.070078-0
  17. Gomont, M. 1892. Monographie des Oscillariees (Nostocacees Homocystees). Deuxième partie. - Lyngbyees. Ann. Sci. Nat. Bot. Ser. 7. 16:91-264.
  18. Hentschke, G. S., Johansen, J. R., Pietrasiak, N., Fiore, M. F., Rigonato, J., Sant'Anna, C. L. & Komarek, J. 2016. Phylogenetic placement of Dapisostemon gen. nov. and Streptostemon, two tropical heterocytous genera (Cyanobacteria). Phytotaxa 245:129-143. https://doi.org/10.11646/phytotaxa.245.2.4
  19. Hentschke, G. S., Johansen, J. R., Pietrasiak, N., Rigonato, J., Fiore, M. F. & Sant'Anna, C. L. 2017. Komarekiella atlantica gen. et sp. nov. (Nostocaceae, Cyanobacteria): a new subaerial taxon from the Atlantic Rainforest and Kauai, Hawaii. Fottea 17:178-190. https://doi.org/10.5507/fot.2017.002
  20. Iteman, I., Rippka, R., Tandeau de Marsac, N. & Herdman, M. 2002. rDNA analyses of planktonic heterocystous cyanobacteria, including members of the genera Anabaenopsis and Cyanospira. Microbiology 148(Pt. 2):481-496. https://doi.org/10.1099/00221287-148-2-481
  21. Jacinavicius, F. R., Gama, W. A. Jr., Azevedo, M. T. P. & Sant'Anna, C. L. 2012. Manual para cultivo de cianobacterias. Publicacoes Online do Instituto de Botanica de Sao Paulo, Sao Paulo, 32 pp.
  22. Johansen, J. R., Kovacik, L., Casamatta, D. A., Fucikova, K. & Kastovsky, J. 2011. Utility of 16S-23S ITS sequence and secondary structure for recognition of intrageneric and intergeneric limits within cyanobacterial taxa: Leptolyngbya corticola sp. nov. (Pseudanabaenaceae, Cyanobacteria). Nova Hedwigia 92:283-302. https://doi.org/10.1127/0029-5035/2011/0092-0283
  23. Karnovsky, M. J. 1965. A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J. Cell. Biol. 27:1A-149A. https://doi.org/10.1083/jcb.27.1.1
  24. Komarek, J. 2016. A polyphasic approach for the taxonomy of cyanobacteria: principles and applications. Eur. J. Phycol. 51:346-353. https://doi.org/10.1080/09670262.2016.1163738
  25. Komarek, J. 2018. Delimitation of the family Oscillatoriaceae (Cyanobacteria) according to the modern polyphasic approach (introductory review). Braz. J. Bot. 41:449-456. https://doi.org/10.1007/s40415-017-0415-y
  26. Komarek, J. & Anagnostidis, K. 2005. Cyanoprokaryota-2. Teil/2nd part: Oscillatoriales. In Budel, B., Gartner, G., Krienitz, L. & Schagerl, M. (Eds.) Susswasserflora von Mitteleuropa 19 ⁄ 778 2. Elsevier/Spektrum, Heidelberg, pp. 1-759.
  27. Komarek, J., Kastovsky, J., Mares, J. & Johansen, J. R. 2014. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 86:295-335.
  28. Komarek, J., Zapomelova, E., Smarda, J., Kopecky, J., Rejmankova, E., Woodhouse, J., Neilan, B. A. & Komarkova, J. 2013. Polyphasic evaluation of Limnoraphis robusta, a water-bloom forming cyanobacterium from Lake Atitlan, Guatemala, with a description of Limnoraphis gen. nov. Fottea 13:39-52. https://doi.org/10.5507/fot.2013.004
  29. Lane, D. J. 1991. 16S/23S rRNA sequencing. In Stackebrandt, E. & Goodfellow, M. (Eds.) Nucleic Acid Techniques in Bacterial Systematics. John Wiley and Sons, Chichester, pp. 115-175.
  30. Lipkin, Y. & Silva, P. C. 2002. Marine algae and seagrasses of the Dahlak Archipelago, southern Red Sea. Nova Hedwigia 75:1-90. https://doi.org/10.1127/0029-5035/2002/0075-0001
  31. Martins, M. D. & Branco, L. H. Z. 2016. Potamolinea gen. nov. (Oscillatoriales, Cyanobacteria): a phylogenetically and ecologically coherent cyanobacterial genus. Int. J. Syst. Evol. Microbiol. 66:3632-3641. https://doi.org/10.1099/ijsem.0.001243
  32. Mau, B., Newton, M. A. & Larget, B. 1999. Bayesian phylogenetic inference via Markov chain Monte Carlo methods. Biometrics 55:1-12. https://doi.org/10.1111/j.0006-341X.1999.00001.x
  33. McGregor, G. B. & Sendall, B. C. 2014. Phylogeny and toxicology of Lyngbya wollei (Cyanobacteria, Oscillatoriales) from north-eastern Australia, with a description of Microseira gen. nov. J. Phycol. 51:109-119.
  34. Muhlsteinova, R., Johansen, J. R., Pietrasiak, N., Martin, M. P., Osorio-Santos, K. & Warren, S. D. 2014. Polyphasic characterization of Trichocoleus desertorum sp. nov. (Pseudanabaenales, Cyanobacteria) from desert soils and phylogenetic placement of the genus Trichocoleus. Phytotaxa 163:241-261. https://doi.org/10.11646/phytotaxa.163.5.1
  35. Mukherjee, C., Chowdhury, R., Sutradhar, T., Begam, M., Ghosh, S. M., Basak, S. K. & Ray, K. 2015. Parboiled rice effluent: a wastewater niche for microalgae and cyanobacteria with growth coupled to comprehensive remediation and phosphorus biofertilization. Algal Res. 19:225-236.
  36. Neilan, B. A., Jacobs, D., Del Dot, T., Blackall, L. L., Hawkins, P. R., Cox, P. T. & Goodman, A. E. 1997. rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. Int. J. Syst. Bacteriol. 47:693-697. https://doi.org/10.1099/00207713-47-3-693
  37. Nylander, J. A. A. 2008. MrModeltest 2.3. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.
  38. Porta, D. & Hernandez-Marine, M. 2005. Structural and ultrastructural characterization of several culture strains assigned to Oscillatoria and Lyngbya (Cyanophyta/Cyanoprokaryota/Cyanobacteria). Algol. Stud. 117:349-370. https://doi.org/10.1127/1864-1318/2005/0117-0349
  39. Posada, D. & Buckley, T. R. 2004. Model selection and model averaging in phylogenetics: analysis advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst. Biol. 53:793-808. https://doi.org/10.1080/10635150490522304
  40. Rehakova, K., Johansen, J. R., Casamatta, D. A., Xuesong, L. & Vincent, J. 2007. Morphological and molecular characterization of selected desert soil cyanobacteria: three species new to science including Mojavia pulchra gen. et sp. nov. Phycologia 46:481-502. https://doi.org/10.2216/06-92.1
  41. Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111:1-61.
  42. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A. & Huelsenbeck, J. P. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61:539-542. https://doi.org/10.1093/sysbio/sys029
  43. Sambrook, J. F. & Russell, D. W. 2001. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York, 2100 pp.
  44. Sant'Anna, C. L. 1995. Cyanophyceae marinhas bentonicas do Parque Estadual da Ilha do Cardoso, SP, Brasil. Hoehnea 22:197-216.
  45. Sant'Anna, C. L. 1997. Cyanophyceae marinhas bentonicas da regiao de Ubatuba, SP, Brasil. Hoehnea 24:57-74.
  46. Sant'Anna, C. L., Cordeiro-Marino, M., Braga, M. R. A. & Guimaraes, S. M. P. B. 1985. Cianoficeas marinhas bentonicas das Praias de Peruibe e dos Sonhos, Municipio de Itanhaem, Sao Paulo, Brasil. Rickia 12:89-112.
  47. Sciuto, K. & Moro, I. 2016. Detection of the new cosmopolitan genus Thermoleptolyngbya (Cyanobacteria, Leptolyngbyaceae) using the 16S rRNA gene and 16S-23S ITS region. Mol. Phylogenet. Evol. 105:15-35. https://doi.org/10.1016/j.ympev.2016.08.010
  48. Sharp, K., Arthur, K. E., Gu, L., Ross, C., Harrison, G., Gunasekera, S. P., Meickle, T., Matthew, S., Luesch, H., Thacker, R. W., Sherman, D. H. & Paul, V. J. 2009. Phylogenetic and chemical diversity of three chemotypes of bloomforming Lyngbya species (Cyanobacteria: Oscillatoriales) from reefs of southeastern Florida. Appl. Environ. Microbiol. 75:2879-2888. https://doi.org/10.1128/AEM.02656-08
  49. Stamatakis, A. 2006. RAxML-VI-HPC: maximum likelihoodbased phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688-2690. https://doi.org/10.1093/bioinformatics/btl446
  50. Stamatakis, A., Hoover, P. & Rougemont, J. 2008. A rapid bootstrap algorithm for the RAxML web servers. Syst. Biol. 57:758-771. https://doi.org/10.1080/10635150802429642
  51. Stoyanov, P., Moten, D., Mladenov, R., Dzhambazov, B. & Teneva, I. 2014. Phylogenetic relationships of some filamentous cyanoprokaryotic species. Evol. Bioinform. Online 10:39-49.
  52. Taton, A., Grubisic, S., Brambilla, E., De Wit, R. & Wilmotte, A. 2003. Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl. Environ. Microbiol. 69:5157-5169. https://doi.org/10.1128/AEM.69.9.5157-5169.2003
  53. Vaz, M. G. M. V., Genuario, D. B., Andreote, A. P. D., Malone, C. F. S., Sant'Anna, C. L., Barbiero, L. & Fiore, M. F. 2014. Pantanalinema gen. nov. and Alkalinema gen. nov.: novel pseudanabaenacean genera (Cyanobacteria) isolated from saline-alkaline lakes. Int. J. Syst. Evol. Microbiol. 65:298-308.
  54. Werner, V. R., Cabezudo, M. M., Neuhaus, E. B., Caires, T. A., Sant'Anna, C. L., Azevedo, M. T. P., Malone, C., Gama, W. A. Jr., Santos, K. R. S. & Menezes, M. 2017. Cyanophyceae in Lista de Especies da Flora do Brasil. Jardim Botanico do Rio de Janeiro. Available from: http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB108025. Accessed Aug 27, 2017.
  55. Zuker, M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31:3406-3415. https://doi.org/10.1093/nar/gkg595

Cited by

  1. Substratum‐associated microbiota vol.91, pp.10, 2018, https://doi.org/10.1002/wer.1226
  2. Quo vadis, taxonomy of cyanobacteria (2019) vol.20, pp.1, 2018, https://doi.org/10.5507/fot.2019.020
  3. Violetonostoc minutum gen. et sp. nov. (Nostocales, Cyanobacteria) from a rocky substrate in China vol.35, pp.1, 2018, https://doi.org/10.4490/algae.2020.35.3.4
  4. Eudesmacarbonate, a Eudesmane-Type Sesquiterpene from a Marine Filamentous Cyanobacterial Mat (Oscillatoriales) in the Florida Keys vol.83, pp.6, 2020, https://doi.org/10.1021/acs.jnatprod.0c00203
  5. Novel marine cyanobacteria from the Atlantic coast of Brazil vol.1, pp.1, 2018, https://doi.org/10.1080/26388081.2020.1753571
  6. The occurrence of Affixifilum gen. nov. and Neolyngbya (Oscillatoriaceae) in South Florida (USA), with the description of A. floridanum sp. nov. and N. biscaynensis sp. nov vol.57, pp.1, 2021, https://doi.org/10.1111/jpy.13065
  7. Tenebriella gen. nov. - The dark twin of Oscillatoria vol.165, pp.None, 2018, https://doi.org/10.1016/j.ympev.2021.107293
  8. Identification of apparently neurotoxic metabolites from assemblages of marine filamentous cyanobacteria associated with the intoxication of captive bottlenose dolphins (Tursiops truncatus) in the Flo vol.288, pp.p1, 2018, https://doi.org/10.1016/j.chemosphere.2021.132423