DOI QR코드

DOI QR Code

Optimized cultivation of Ettlia sp. YC001 in eutrophic pond water for nutrient removal and biomass production

  • Oh, Hyung-Seok (Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Ahn, Chi-Yong (Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Srivastava, Ankita (Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Oh, Hee-Mock (Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • Received : 2018.08.14
  • Accepted : 2018.12.09
  • Published : 2018.12.15

Abstract

Ettlia sp. YC001, a highly settleable and productive microalga, was shown to be effective in removing nutrients and capturing suspended solids from eutrophic pond water. The optimum conditions for the Ettlia sp. YC001 cultivation were investigated using water from a landscape pond. The pond water was supplemented with different N : P ratios by weight, and the biomass production and nutrient removal compared in batch cultures. The maximum removal rate of N and P was with an N : P ratio of 16 : 1. Plus, the turbidity dropped to near zero within 4 days. Meanwhile, chemostat cultivation showed that the biomass productivity and nutrient removal rate increased when increasing the dilution rate, where a dilution rate of $0.9d^{-1}$ showed the highest N and P removal rate at $32.4mg\;L^{-1}\;d^{-1}$ and $1.83mg\;L^{-1}\;d^{-1}$, respectively, and highest biomass and lipid productivity at $0.432g\;L^{-1}\;d^{-1}$ and $67.8mg\;L^{-1}\;d^{-1}$, respectively. The turbidity was also reduced by 98% in the chemostat cultivation. Moreover, auto-flocculation and pH were closely connected to the turbidity removal. As a result, this study identified the optimal N : P ratio for small pond water treatment using an Ettlia sp. YC001, while also establishing the optimal conditions for nutrient removal, turbidity reduction, and biomass production.

Keywords

References

  1. Acien, F. G., Gomez-Serrano, C., Morales-Amaral, M. M., Fernandez-Sevilla, J. M. & Molina-Grima, E. 2016. Wastewater treatment using microalgae: how realistic a contribution might it be to significant urban wastewater treatment? Appl. Microbiol. Biotechnol. 100:9013-9022. https://doi.org/10.1007/s00253-016-7835-7
  2. Arnold, M. 2013. Sustainable algal biomass products by cultivation in waste water flows. VTT Technol. 147:1-84.
  3. Bligh, E. G. & Dyer, W. J. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37:911-917. https://doi.org/10.1139/y59-099
  4. Cembella, A. D., Antia, N. J. & Harrison, P. J. 1982. The utilization of inorganic and organic phosphorous compounds as nutrients by eukaryotic microalgae: a multidisciplinary perspective: part I. CRC Crit. Rev. Microbiol. 10:317-391. https://doi.org/10.3109/10408418209113567
  5. Chun, S. -J., Cui, Y., Ahn, C. -Y. & Oh, H. -M. 2018. Improving water quality using settleable microalga Ettlia sp. and bacterial community in freshwater recirculating aquaculture system of Danio rerio. Water Res. 135:112-121. https://doi.org/10.1016/j.watres.2018.02.007
  6. De-Bashan, L. E., Hernandez, J. -P., Morey, T. & Bashan, Y. 2004. Microalgae growth-promoting bacteria as "helpers" for microalgae: a novel approach for removing ammonium and phosphorus from municipal wastewater. Water Res. 38:466-474. https://doi.org/10.1016/j.watres.2003.09.022
  7. Hammed, A. M., Prajapati, S. K., Simsek, S. & Simsek, H. 2016. Growth regime and environmental remediation of microalgae. Algae 31:189-204. https://doi.org/10.4490/algae.2016.31.8.28
  8. Heisler, J., Glibert, P. M., Burkholder, J. M., Anderson, D. M., Cochlan, W., Dennison, W., Dortch, Q., Gobler, C. J., Heil, C. A., Humphries, E., Lewitus, A., Magnien, R., Marshall, H. G., Sellner, K., Stockwell, D. A., Stoecker, D. K. & Suddleson, M. 2008. Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae 8:3-13. https://doi.org/10.1016/j.hal.2008.08.006
  9. Kim, C. -J., Jung, Y. -H., Ahn, C. -Y., Lee, Y. -K. & Oh, H. -M. 2010. Adsorption of turbid materials by the cyanobacterium Phormidium parchydematicum. J. Appl. Phycol. 22:181-186. https://doi.org/10.1007/s10811-009-9440-y
  10. Klausmeier, C. A., Litchman, E., Daufresne, T. & Levin, S. A. 2004. Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature 429:171-174. https://doi.org/10.1038/nature02454
  11. La, H. -J., Seo, S. -H., Lee, J. -Y., Lee, C. S., Kim, B. -H., Srivastava, A., Han, M. -S. & Oh, H. -M. 2016. Improved mixing efficiency and biomass productivity of Ettlia sp. in cocultivation system with loaches. Algal Res. 17:300-307. https://doi.org/10.1016/j.algal.2016.05.021
  12. Lee, N., Ko, S. -R., Ahn, C. -Y. & Oh, H. -M. 2018. Optimized co-production of lipids and carotenoids from Ettlia sp. by regulating stress conditions. Bioresour. Technol. 258:234-239. https://doi.org/10.1016/j.biortech.2018.03.006
  13. Oh, H. -M., Lee, S. J., Jang, M. -H. & Yoon, B. -D. 2000. Microcystin production by Microcystis aeruginosa in a phosphorus-limited chemostat. Appl. Environ. Microbiol. 66:176-179. https://doi.org/10.1128/AEM.66.1.176-179.2000
  14. Oh, H. -S., Lee, C. S., Srivastava, A., Oh, H. -M. & Ahn, C. -Y. 2017. Effects of environmental factors on cyanobacterial production of odorous compounds: geosmin and 2-methylisoborneol. J. Microbiol. Biotechnol. 27:1316-1323. https://doi.org/10.4014/jmb.1702.02069
  15. Park, M. K., Lee, S. J., Suh, H. -H., Kim, H. -S., Kim, Y. H., Yoon, B. -D. & Oh, H. -M. 1998. Advanced treatment of swine wastewater by a green alga, Scenedesmus quadricauda. Algae 13:227-233.
  16. Pignolet, O., Jubeau, S., Vaca-Garcia, C. & Michaud, P. 2013. Highly valuable microalgae: biochemical and topological aspects. J. Ind. Microbiol. Biotechnol. 40:781-796. https://doi.org/10.1007/s10295-013-1281-7
  17. Randrianarison, G. & Ashraf, M. A. 2017. Microalgae: a potential plant for energy production. Geology, Ecology, and Landscapes 1:104-120. https://doi.org/10.1080/24749508.2017.1332853
  18. Rezvani, F., Sarrafzadeh, M. -H., Seo, S. -H. & Oh, H. -M. 2017. Phosphorus optimization for simultaneous nitrate-contaminated groundwater treatment and algae biomass production using Ettlia sp. Bioresour. Technol. 244:785-792. https://doi.org/10.1016/j.biortech.2017.08.053
  19. Rhee, G.-Y. 1978. Effects of N:P atomic ratios and nitrate limitation on algal growth, cell composition, and nitrate uptake. Limnol. Oceanogr. 23:10-25. https://doi.org/10.4319/lo.1978.23.1.0010
  20. Rhee, G.-Y. & Gotham, I. J. 1980. Optimum N:P ratios and coexistence of planktonic algae. J. Phycol. 16:486-489. https://doi.org/10.1111/j.1529-8817.1980.tb03065.x
  21. Salim, S., Kosterink, N. R., Tchetkoua Wacka, N. D., Vermue, M. H. & Wijffels, R. H. 2014. Mechanism behind autoflocculation of unicellular green micro algae Ettlia texensis. J. Biotechnol. 174:34-38. https://doi.org/10.1016/j.jbiotec.2014.01.026
  22. Scott, S. A., Davey, M. P., Dennis, J. S., Horst, I., Howe, C. J., Lea-Smith, D. J. & Smith, A. G. 2010. Biodiesel from algae: challenges and prospects. Curr. Opin. Biotechnol. 21:277-286. https://doi.org/10.1016/j.copbio.2010.03.005
  23. Singh, D., Nedbal, L. & Ebenhöh, O. 2018. Modelling phosphorus uptake in microalgae. Biochem. Soc. Trans. 46:483-490. https://doi.org/10.1042/BST20170262
  24. Solovchenko, A., Verschoor, A. M., Jablonowski, N. D. & Nedbal, L. 2016. Phosphorus from wastewater to crops: an alternative path involving microalgae. Biotechnol. Adv. 34:550-564. https://doi.org/10.1016/j.biotechadv.2016.01.002
  25. Stanier, R. Y., Kunisawa, R., Mandel, M. & Cohen-Bazire, G. 1971. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol. Rev. 35:171-205.
  26. Whitton, R., Le Mevel, A., Pidou, M., Ometto, F., Villa, R. & Jefferson, B. 2016. Influence of microalgal N and P composition on wastewater nutrient remediation. Water Res. 91:371-378. https://doi.org/10.1016/j.watres.2015.12.054
  27. Woertz, I., Fulton, L. & Lundquist, T. 2009. Nutrient removal & greenhouse gas abatement with $CO_2$ supplemented algal high rate ponds. In Annual Conference of Water Environment Federation, Water Environment Federation, Alexandria, VA, p. 13.
  28. Wu, Y. -H., Yu, Y., Li, X., Hu, H. -Y. & Su, Z. -F. 2012. Biomass production of a Scenedesmus sp. under phosphorousstarvation cultivation condition. Bioresour. Technol. 112:193-198. https://doi.org/10.1016/j.biortech.2012.02.037
  29. Yoo, C., Choi, G. -G., Kim, S. -C. & Oh, H. -M. 2013. Ettlia sp. YC001 showing high growth rate and lipid content under high $CO_2$. Bioresour. Technol. 127:482-488. https://doi.org/10.1016/j.biortech.2012.09.046
  30. Yoo, C., La, H. -J., Kim, S. -C. & Oh, H. -M. 2015. Simple processes for optimized growth and harvest of Ettlia sp. by pH control using $CO_2$ and light irradiation. Biotechnol. Bioeng. 112:288-296. https://doi.org/10.1002/bit.25362
  31. Zhang, G. & Wang, Z. 2000. Mechanism study of the coagulant impact on mutagenic activity in water. Water Res. 34:1781-1790. https://doi.org/10.1016/S0043-1354(99)00332-2