DOI QR코드

DOI QR Code

A Study of Dopant Distribution in SiGe Using Ion Implantation and Thermal Annealing

SiGe에 이온 주입과 열처리에 의한 불순물 분포의 연구

  • Jung, Won-Chae (Department of Electronic Engineering, Kyonggi University)
  • Received : 2018.06.29
  • Accepted : 2018.07.18
  • Published : 2018.09.01

Abstract

For the investigation of dopant profiles in implanted $Si_{1-x}Ge_x$, the implanted B and As profiles are measured using SIMS (secondary ion mass spectrometry). The fundamental ion-solid interactions of implantation in $Si_{1-x}Ge_x$ are discussed and explained using SRIM, UT-marlowe, and T-dyn programs. The annealed simulation profiles are also analyzed and compared with experimental data. In comparison with the SIMS data, the boron simulation results show 8% deviations of $R_p$ and 1.8% deviations of ${\Delta}R_p$ owing to relatively small lattice strain and relaxation on the sample surface. In comparison with the SIMS data, the simulation results show 4.7% deviations of $R_p$ and 8.1% deviations of ${\Delta}R_p$ in the arsenic implanted $Si_{0.2}Ge_{0.8}$ layer and 8.5% deviations of $R_p$ and 38% deviations of ${\Delta}R_p$ in the $Si_{0.5}Ge_{0.5}$ layer. An analytical method for obtaining the dopant profile is proposed and also compared with experimental and simulation data herein. For the high-speed CMOSFET (complementary metal oxide semiconductor field effect transistor) and HBT (heterojunction bipolar transistor), the study of dopant profiles in the $Si_{1-x}Ge_x$ layer becomes more important for accurate device scaling and fabrication technologies.

Keywords

References

  1. S. Jayanarayanan, F. Prins, X. Chen, and S. Banerjee, Mater. Res. Soc. Symp. Proc., 686, A2.8 (2002). [DOI: https://doi.org/10.1557/PROC-686-A2.8]
  2. W. P. Maszara, Mater. Res. Soc. Symp. Proc., 686, A2.5 (2002). [DOI: https://doi.org/10.1557/PROC-686-A2.5]
  3. A. G. O'Neill and D. A. Antoniadis, IEEE Trans. Electron Devices, 43, 911 (1996). [DOI: https://doi.org/10.1109/16.502123]
  4. Z. Shi, X. Chen, D. Onsongo, E. J. Quinones, and S. K. Banerjee, Solid-State Electron., 44, 1223 (2000). [DOI: https://doi.org/10.1016/S0038-1101(00)00031-9]
  5. J. B. Roldan, F. Gamiz, J. A. Lopez-Villanueva, and J. E. Carceller, Semicond. Sci. Technol., 12, 1603 (1997). [DOI: https://doi.org/10.1088/0268-1242/12/12/010]
  6. J. P. Dismukes, L. Ekstrom, E. F. Steigmeier, I. Kudman, and D. S. Beers, J. Appl. Phys., 35, 2899 (1964). [DOI: https://doi.org/10.1063/1.1713126]
  7. H. Morkoc, B. Sverdlov, and G. B. Gao, Proc. IEEE, 81, 493(1993). [DOI: https://doi.org/10.1109/5.219338]
  8. J. D. Cressler, E. F. Crabbe, J. H. Comfort, J.Y.C. Sun, and J.M.C. Stork, IEEE Electron Device Lett., 15, 472 (1994). [DOI: https://doi.org/10.1109/55.334671]
  9. L. D. Lanzerotti, A. S. Amour, C. W. Liu, J. C. Sturm, J. K. Watanabe, and D. Theodore, IEEE Electron Device Lett., 17, 334 (1996). [DOI: https://doi.org/10.1109/55.506359]
  10. K. Washio, E. Ohue, K. Oda, M. Tanabe, H. Shimamoto, and T. Onai, Proc. International Electron Devices Meeting. IEDM Technical Digest (IEEE, Washington, USA, 1997). p. 795.
  11. D. L. Harame and B. S. Meyerson, IEEE Trans. Electron Devices, 48, 2555 (2001). [DOI: https://doi.org/10.1109/16.960383]
  12. J. D. Cressler, SiGe and Si Strained-Layer Epitaxy for Silicon Heterostructure Devices (FL. CRC Press, New York, 2008) p. 89.
  13. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1985) p. 52.
  14. W. Moller, W. Eckstein, and J. P. Biersack, Comput. Phys. Commun., 51, 355 (1998). [DOI: https://doi.org/10.1016/0010-4655(88)90148-8]
  15. W. Moller and W. Eckstein, Nucl. Instrum. Methods B, 2, 814 (1984). [DOI: https://doi.org/10.1016/0168-583X(84)90321-5]
  16. J. P. Biersack, S. Berg, and C. Nender, Nucl. Instrum. Methods B, 59, 21 (1991). [DOI: https://doi.org/10.1016/0168-583x(91)95167-c]
  17. H. Ryssel, J. Lorenz, and K. Hoffmann, Appl. Phys., A41, 201 (1986). [DOI: https://doi.org/10.1007/bf00616841]
  18. S. H. Yang, S. J. Morris, D. L. Lim, A. F. Tasch, R. B. Simonton, D. Kamenitsa, C. Magee, and G. Lux, J. Electron. Mater., 23, 801 (1994). [DOI: https://doi.org/10.1007/bf02651376]
  19. K. M. Klein, C. Park, and A. F. Tasch, Nucl. Instrum. Methods B, 59, 60 (1991). [https://doi.org/10.1016/0168-583x(91)95175-d]
  20. L. A. Edelman, M. S. Phen, K. S. Jones, R. G. Elliman, and L. M. Rubin, Appl. Phys. Lett., 92, 172108 (2008). [DOI: https://doi.org/10.1063/1.2919085]
  21. P. Kuo, J. L. Hoyt, J. F. Gibbons, J. E. Turner, and D. Lefforge, Appl. Phys. Lett., 66, 580 (1995). [DOI: https://doi.org/10.1063/1.114019]
  22. R. Wittmann, S. Uppal, A. Hossinger, J. Cervenka, and S. Selberherr, ECS Trans., 3, 667 (2006). [DOI: https://doi.org/10.1149/1.2355862]
  23. C. C. Wang, Y. M. Sheu, S. Liu, R. Duffy, A. Heringa, N.E.B. Cowern, and P. B. Griffin, Mater. Sci. Eng., B, 124, 39 (2005). [DOI: https://doi.org/10.1016/j.mseb.2005.08.127]