DOI QR코드

DOI QR Code

The GIDL Current Characteristics of P-Type Poly-Si TFT Aged by Off-State Stress

오프 상태 스트레스에 의한 에이징된 P형 Poly-Si TFT에서의 GIDL 전류의 특성

  • Shin, Donggi (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Jang, Kyungsoo (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Phu, Nguyen Thi Cam (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Park, Heejun (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Kim, Jeongsoo (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Park, Joonghyun (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Yi, Junsin (College of Information and Communication Engineering, Sungkyunkwan University)
  • 신동기 (성균관대학교 정보통신대학) ;
  • 장경수 (성균관대학교 정보통신대학) ;
  • ;
  • 박희준 (성균관대학교 정보통신대학) ;
  • 김정수 (성균관대학교 정보통신대학) ;
  • 박중현 (성균관대학교 정보통신대학) ;
  • 이준신 (성균관대학교 정보통신대학)
  • Received : 2018.04.17
  • Accepted : 2018.06.27
  • Published : 2018.09.01

Abstract

The effects of off-state bias stress on the characteristics of p-type poly-Si TFT were investigated. To reduce the gate-induced drain leakage (GIDL) current, the off-state bias stress was changed by varying Vgs and Vds. After application of the off-state bias stress, the Vgs causing GIDL current was dramatically increased from 1 to 10 V, and thus, the Vgs margin to turn off the TFT was improved. The on-current and subthreshold swing in the aged TFT was maintained. We performed a technology computer-aided design (TCAD) simulation to describe the aged characteristics. The aged-transfer characteristics were well described by the local charge trapping. The activation energy of the GIDL current was measured for the pristine and aged characteristics. The reduced GIDL current was mainly a thermionic field-emission current.

Keywords

References

  1. T. Serikawa, S. Shirai, A. Okamoto, and S. Suyama, IEEE Trans. Electron Devices, 36, 1929 (1989). [DOI: https://doi.org/10.1109/16.34272]
  2. J. J. Lih, C. F. Sung, C. H. Li, T. H. Hsiao, and H. H. Lee, J. Soc. Inf. Disp., 12, 367 (2004). [DOI: https://doi.org/10.1889/1.1847734]
  3. G. Kawachi, S. Tsuboi, T. Okada, M. Mitani, and M. Matsumura, J. Appl. Phys., 100, 114507 (2006). [DOI: https://doi.org/10.1063/1.2392717]
  4. A. A. Orouji and M. J. Kumar, IEEE Trans. Device Mater. Reliab., 6, 315 (2006). [DOI: https://doi.org/10.1109/TDMR.2006.876608]
  5. S. H. Han, I. S. Kang, N. K. Song, M. S. Kim, J. S. Lee, and S. K. Joo, IEEE Trans. Electron Devices, 54, 2546 (2007). [DOI: https://doi.org/10.1109/TED.2007.901880]
  6. D. Zhang, M. Wang, H. Wang, Y. Wu, H. Zhou, and J. He, Proc. 2015 IEEE 22nd International Symposium on the Physical and Failure Analysis of Integrated Circuits (IEEE, Hsinchu, Taiwan, 2015) p. 407.
  7. G.A.M. Hurkx, D.B.M. Klaassen, and M.P.G. Knuvers, IEEE Trans. Electron Devices, 39, 331 (1992). [DOI: https://doi.org/10.1109/16.121690]
  8. M. J. Powell, C. van Berkel, and J. R. Hughes, Appl. Phys. Lett., 54, 1323 (1989). [DOI: https://doi.org/10.1063/1.100704]
  9. C. Hu, S. C. Tam, F. C. Hsu, P. K. Ko, T. Y. Chan, and K. W. Terrill, IEEE J. Solid-State Circuits, 20, 295 (1985). [DOI: https://doi.org/10.1109/JSSC.1985.1052306]
  10. A. Schwerin, W. Hansch, and W. Weber, IEEE Trans. Electron Devices, 34, 2493 (1987). [DOI: https://doi.org/10.1109/T-ED.1987.23340]
  11. K. M. Han and C. T. Sah, IEEE Trans. Electron Devices, 45, 1624 (1998). [DOI: https://doi.org/10.1109/16.701500]
  12. K. C. Moon, J. H. Lee, and M. K. Han, IEEE Trans. Electron Devices, 52, 512 (2005). [DOI: https://doi.org/10.1109/TED.2005.844740]
  13. Y. H. Tai, S. C. Huang, and P. T. Chen, IEEE Trans. Device Mater. Reliab., 10, 62 (2010). [DOI: https://doi.org/10.1109/TDMR.2009.2033466]
  14. C. H. Kim, K. S. Sohn, and J. Jang, J. Appl. Phys., 81, 8084 (1997). [DOI: https://doi.org/10.1063/1.365416]