References
- IEA, World Energy Outlook, International Energy Agency, (2009).
- J. Dufour, D. Iribarren, "Life Cycle Assessment of Biodiesel Production from Free Fatty Acid-rich Waste", Renew. Energy, Vol.38, No.1, pp. 155-162, (2012). https://doi.org/10.1016/j.renene.2011.07.016
- X. Zhang, S. Yan, R. D. Tyagi, R. Y. Surampalli, "Energy Balance and Greenhouse Gas Emission of Biodiesel Production from Oil Derived from Wastewater and Wastewater Sludge", Renew. Energy, Vol.55, pp. 392-403, (2013). https://doi.org/10.1016/j.renene.2012.12.046
- S. Dumontet, A. Scopa, S. Kerje, K. Krovacek, "The Importance of Pathogenic Organisms in Sewage and Sewage Sludge", J. Air waste Manag. Assoc., Vol.51, No.6, pp. 848-860, (2001). https://doi.org/10.1080/10473289.2001.10464313
- M. Campoy, A. Gomez-Barea, P. Ollero, S. Nilsson, "Gasification of Wastes in a Pilot Fluidized Bed Gasifier", Fuel Process Technol., Vol.121, pp. 63-69, (2015).
- M. A. Martinez, I. Fonts, L. Lazaro, J. ceamanos, "Fast Pyrolysis of Torrefied Sewage Sludge in a Fluidized Bed Reactor", Chem Eng. J., Vol.259, No.1, pp. 467-480, (2015). https://doi.org/10.1016/j.cej.2014.08.004
- P. Chen, Q. Xie, M. Addy, W. Zhou, Y. Liu, Y. Wang, Y. Cheng, K. Li, R. Ruan, "Utilization of Municipal Solid and Liquid Wastes for Bioenergy and Bioproducts Production", Bioresour. Technol., Vol.215, pp. 163-172, (2016). https://doi.org/10.1016/j.biortech.2016.02.094
- M. C. Samolada, A. A. Zabaniotou, "Comparative Assessment of Municipal Sewage Sludge Incineration, Gasification and Pyrolysis for a Sustainable Sludge-to-energy Management in Greece", Waste Manag., Vol.34, No.2, pp. 411-420, (2014). https://doi.org/10.1016/j.wasman.2013.11.003
- W. Rulkens, "Sewage Sludge as a Biomass Resource for the Production of Energy: Overview and Assessment of the Various Options", Energy Fuels, Vol.22, No.1, pp. 9-15, (2008). https://doi.org/10.1021/ef700267m
- Y. Cao, A. Pawlowski, "Life Cycle Assessment of Two Emerging Sewage Sludge to Energy Systems: Evaluating Energy and Greenhouse Gas Emissions Implications", Bioresour. Technol., Vol.127, pp. 81-91, (2013). https://doi.org/10.1016/j.biortech.2012.09.135
- A. Magdziarz, A. K. Dalai, J. A. Kozinski, "Chemical Composition, Character and Reactivity of Renewable Fuel Ashes", Fuel, Vol.176, No.15, pp. 135-145, (2016). https://doi.org/10.1016/j.fuel.2016.02.069
- P. Manara, A. Zabaniotou, "Towards Sewage Sludge Based Biofuels via Thermochemical Conversion-a Review", Renew. Sustain. Energy Rev., Vol.16, No.5, pp. 2566-2582, (2012). https://doi.org/10.1016/j.rser.2012.01.074
- E. A. Harrison, S. R. Oakes, M. Hysell, A. Hay, "Organic Chemicals in Sewage Sludges", Sci. Total. Environ., Vol.367, No.31, pp. 481-497, (2006). https://doi.org/10.1016/j.scitotenv.2006.04.002
- H. Han, S. Hu, S. S. A. Syed-Hassan, Y. Xiao, Y. Wang, J. Xu, L. Jiang, S. Su, J. Xiang, "Effects of Reaction Conditions on the Emission Behaviors of Arsenic, Cadmium and Lead during Sewage Sludge Pyrolysis", Bioresour. Technol., Vol.236, pp. 138-145, (2017). https://doi.org/10.1016/j.biortech.2017.03.112
- T. Spanos, A. Ene, C. S. Patronidou, C. Xatzixristou, "Temporal Variability of Sewage Sludge Heavy Metal Content from Greek Wastewater Treatment Plants", Ecol. Chem. Eng. S., Vol.23, No.2, pp. 271-283, (2016). https://doi.org/10.1515/eces-2016-0019
- W. Rulkens, "Sewage Sludge as a Biomass Resource for the Production of Energy: Overview and Assessment of the Various Options", Energy Fuels, Vol.22, No.1, pp. 9-15, (2008). https://doi.org/10.1021/ef700267m
- J. P. Cao, L. Y. Li, K. Morishita, X. B. Xiao, X. Y. Zhao, X. Y. Wei, T. Takarada, "Nitrogen Transformations during Fast Pyrolysis of Sewage Sludge", Fuel, Vol.104, pp. 1-6, (2013). https://doi.org/10.1016/j.fuel.2010.08.015
-
M. Azuara, I. Fonts, P. arcelona, M. B. Murillo, G. Gea, "Study of Catalytic Posttreatment of the Vapours from Sewage Sludge Pyrolysis by Means of
$Al_2O_3$ ", Fuel, Vol.107, pp. 113-121, (2013). https://doi.org/10.1016/j.fuel.2013.02.017 - N. Nipattummakul, I. I. Ahmed, S. Kerdsuwan, A. K. Gupta, "Hydrogen and Syngas Production from Sewage Sludge via Steam Gasification", Int. J. Hydrog. Energy, Vol.35, No. 21, pp. 11738-11745, (2010). https://doi.org/10.1016/j.ijhydene.2010.08.032
- S. K. Han, H. W. Song, C. S. Choi, H. Kim, S. E. Lee, "Physicochemical Properties of Sewage Sludge According to Thermal Hydrolysis Reaction Temperature", J. Korea Soc. Waste Manag., Vol.29, No.4, pp. 414-420, (2012).
- J. I. Son, Y. H. Hong, S. J. Cho, H. M. Yoo, K. H. Kim, "A Study on the Thermal and Carbonization Characteristic of Sewage Sludge in Fixed-bed Reactor", J. Korea Soc. Waste Manag., Vol.30, No.5, pp. 499-504, (2013). https://doi.org/10.9786/kswm.2013.30.5.499
- B. Jung, "Characteristics of Product Gases in High Temperature Pyrolysis of Sewage Sludges", J. Korea Soc. Waste Manag., Vol.30, No.7, pp. 748-754, (2013). https://doi.org/10.9786/kswm.2013.30.7.748
- J. H. Sung, Y. C. Seo, H. N. Jang, S. K. Back, B. M. Jeong, J. H. Kim, S. J. Jung, Y. J. T. Cho, "Oxy-fuel Combustion Characteristic of Dried Sewage Sludge using Circulating Fluidized Bed", J. Korea Soc. Waste Manag., Vol.31, No.6, pp. 638-645, (2014). https://doi.org/10.9786/kswm.2014.31.6.638
- B. R. Jeong, S. H. Yoon, Y. N. Chun, "Energy Conversion Characteristics on Microwave Pyrolysis and Gasification for a Sewage Sludge Waste", J. Korea Soc. Waste Manag., Vol.33, No.3, pp. 294-302, (2016). https://doi.org/10.9786/kswm.2016.33.3.294
- D. Kim, S. K. Han, E. S. Jang, S. Park, H. Kim, G. B. Lee, " The Study on Scale-up Hydrothermal Carbonization to Produce Solid Recovered Fuel from Sewage Sludge and Energy Recovery", J. Korea Soc. Waste Manag., Vol.33, No.7, pp. 683-690, (2016). https://doi.org/10.9786/kswm.2016.33.7.683
- O. Debono, A. Villot, "Nitrogen Products and Reaction Pathway of Nitrogen Compounds during the Pyrolysis of Various Organic Wastes", J. Anal. Appl. Pyrol., Vol.114, pp. 222-234, (2015). https://doi.org/10.1016/j.jaap.2015.06.002
- D. Oh, D. Kim, H. W. Song, H. Kim, K. Y. Park, "Lipid Recovery to Produce Bio-diesel and Fuel Properties of Extraction Residue from Wastewater Sludge", J. Korea Soc. Waste Manag., Vol.34, No.1, pp.56-62, (2017). https://doi.org/10.9786/kswm.2017.34.1.56
- S. J. Baik, I. S. Han, S. M. Hong, S. H. Kang, "Research on Drying Characteristics of Sewage Sludge by Indirect Heating Device using Thermal Oil", J. Korea Soc. Waste Manag., Vol.31, No.5, pp. 574-580, (2014). https://doi.org/10.9786/kswm.2014.31.5.574
- R. C. Kistler, F. Widmer, P. H. Brunner, "Behavior of Chromium, Nickel, Copper, Zinc, Cadmium, Mercury, and Lead during the Pyrolysis of Sewage Sludge", Environ. Sci. Technol., Vol.21, No.7, pp. 704-708, (1987). https://doi.org/10.1021/es00161a012
- C. Wang, X. Hu, M. L. Chen, Y. H. Wu, "Total Concentrations and Fractions of Cd, Cr, Pb, Cu, Ni and Zn in Sewage Sludge from Municipal and Industrial Wastewater Treatment Plants", J. Hazard Mater., Vol.119, No.17, pp. 245-249, (2005). https://doi.org/10.1016/j.jhazmat.2004.11.023
- J. N. Lester, "Significance and Behaviour of Heavy Metals in Waste Water Treatment Processes I. Sewage Treatment and Effluent Discharge", Sci. Total Environ., Vol.30, pp. 1-44, (1983). https://doi.org/10.1016/0048-9697(83)90002-5
- M. V. de Velden, R. Dewil, J. Baeyens, L. Josson, P. Lanssens, "The Distribution of Heavy Metals during Fluidized Bed Combustion of Sludge (FBSC)", J. Hazard Mater., Vol.151, No.28, pp. 96-102, (2008). https://doi.org/10.1016/j.jhazmat.2007.05.056
- L. Zhang, C. Xu, P. Champagne, W. Mabee, "Overview of Current Biological and Thermo-chemical Treatment Technologies for Sustainable Sludge Management", Waste Manag. Res., Vol.32, No.7, pp. 586-600, (2014). https://doi.org/10.1177/0734242X14538303
- E. Adar, B. Karatop, M. Ince, M. S. Bilgili, "Comparison of Methods for Sustainable Energy Management with Sewage Sludge in Turkey Based on SWOT-FAHP Analysis", Renew. Sustain. Energy Rev., Vol.62, pp. 429-440, (2016). https://doi.org/10.1016/j.rser.2016.05.007
- T. Damartzis, A. Zabaniotou, "Thermochemical Conversion of Biomass to Second Generation Biofuels through Integrated Process Design-a Review", Renew. Sustain. Energy Rev., Vol.15, No.1, pp. 366-378, (2011). https://doi.org/10.1016/j.rser.2010.08.003
- V. S. Sikarwar, M. Zhao, P. Clough, J. Yao, X. Zhong, M. Z. Memon, N. Shah, E. J. Anthony, P. S. Fennell, "An Overview of Advances in Biomass Gasification", Energy Environ. Sci., Vol.9, No.10, pp. 2939-2977, (2016). https://doi.org/10.1039/C6EE00935B
- T. Kan, V. Strezov, T. J. Evans, "Lignocellulosic Biomass Pyrolysis: a Review of Product Properties and Effects of Pyrolysis Parameters", Renew Sustain. Energy Rev., Vol.57, pp. 1126-1140, (2016). https://doi.org/10.1016/j.rser.2015.12.185
- M. Li, B. Xiao, X. Wang, J. Liu, "Consequences of Sludge Composition on Combustion Performance Derived from Thermogravimetry Analysis", Waste Manag., Vol.35, pp. 141-147, (2015). https://doi.org/10.1016/j.wasman.2014.10.004
- A. Magdziarz, S. Werle, "Analysis of the Combustion and Pyrolysis of Dried Sewage Sludge by TGA and MS", Waste Manag., Vol.34, No.1, pp. 174-179, (2014). https://doi.org/10.1016/j.wasman.2013.10.033
- J. Shao, R. Yan, H. Chen, B. Wang, D. H. Lee, D. T. Liang, "Pyrolysis Characteristics and Kinetics of Sewage Sludge by Thermogravimetry Fourier Transform Infrared Analysis", Energy Fuels, Vol.22, No.1, pp. 38-45, (2008). https://doi.org/10.1021/ef700287p
- L. Nowicki, S. Ledakowicz, "Comprehensive Characterization of Thermal Decomposition of Sewage Sludge by TG-MS", J. Anal. Appl. Pyrol., Vol.110, pp. 220-228, (2014). https://doi.org/10.1016/j.jaap.2014.09.004
- R. Fonts, A. Fullana, J. A. Conesa, F. Llavador, "Analysis of the Pyrolysis and Combustion of Different Sewage Sludges by TG", J. Anal. Appl. Pyrol., Vol.58, No.1, pp. 927-941, (2001).
- J. Alvarez, M. Amutio, G. Lopez, J. Bilbao, M. Olazar, "Fast Co-pyrolysis of Sewage Sludge and Lignocellulosic Biomass in a Conical Spouted Bed Reactor", Fuel, Vol.159, No.1, pp. 810-818, (2015). https://doi.org/10.1016/j.fuel.2015.07.039
- I. Fonts, G. Gea, M. Azuara, J. Abrego, J. Arauzo, "Sewage Sludge Pyrolysis for Liquid Production: a Review", Renew. Sustain. Energy Rev., Vol.16, No.5, pp. 2781-2805, (2012). https://doi.org/10.1016/j.rser.2012.02.070
- J. Alvarez, G. Lopez, M. Amutio, M. Artetxe, I. Barbarias, A. Arregi, J. Bilbao, M. Olazar, "Characterization of the Bio-oil Obtained by Fast Pyrolysis of Sewage Sludge in a Conical Spouted Bed Reactor", Fuel Process Technol., Vol.149, pp. 169-175, (2016). https://doi.org/10.1016/j.fuproc.2016.04.015
- M. M. Pedroza, J. F. Sousa, G. E. G. Vieira, M. B. D. Bezerra, "Characterization of the Products from the Pyrolysis of Sewage Sludge in 1 kg/h Rotating Cylinder Reactor", J. Anal. Appl. Pyrol., Vol.105, pp. 108-115, (2014). https://doi.org/10.1016/j.jaap.2013.10.009
- E. Pokorna, N. Postelmans, P. Jenicek, S. Schreurs, R. Carleer, J. Yperman, "Study of Bio-oils and Solids from Flash Pyrolysis of Sewage Sludges", Fuel, Vol.88, No.18, pp. 1344-1350, (2009). https://doi.org/10.1016/j.fuel.2009.02.020
- I. Fonts, A. Juan, G. Gea, M. B. Murillo, J. L. Sanchez, "Sewage Sludge Pyrolysis in Fluidized Bed, 1: Influence of Operational Conditions on the Product Distribution", Ind. Eng. Chem. Res., Vol.47, No.15, pp. 5376-5385, (2008). https://doi.org/10.1021/ie7017788
- P. T. Williams, N. Nugranad, "Comparison of Products from the Pyrolysis and Catalytic Pyrolysis of Rice Husks, Energy, Vol.25, No.6, pp. 493-513, (2000). https://doi.org/10.1016/S0360-5442(00)00009-8
- T. S. Nguyen, M. Zabeti, L. Lefferts, G. brem, K. Seshan, "Conversion of Lignocellulosic Biomass to Green Fuel Oil over Sodium Based Catalysts", Bioresour. Technol., Vol.142, pp. 353-360, (2013). https://doi.org/10.1016/j.biortech.2013.05.023
- L. Shen, D. K. Zhang, "An Experimental Study of Oil Recovery from Sewage Sludge by Low-temperature Pyrolysis in a Fluidised-bed", Fuel, Vol.82, No.4, pp. 465-472 (2003). https://doi.org/10.1016/S0016-2361(02)00294-6
- H. J. Park, H. S. Heo, Y. K. Park, J. H. Yim, J. K. Jeon, J. Park, C. Ryu, S. S. Kim, "Clean Bio-oil Production from Fast Pyrolysis of Sewage Sludge: Effects of Reaction Conditions and Metal Oxide Catalysts", Bioresour. Technol., Vol.101, No.1, pp. 83-85 (2010). https://doi.org/10.1016/j.biortech.2009.06.103
- G. Liu, M. M. Wright, Q. Zhao, R. C. Brown, "Hydrocarbon and Ammonia Production from Catalytic Pyrolysis of Sewage Sludge with Acid Pretreatment", ACS Sustain. Chem. Eng., Vol.4, No.3, pp. 1819-1826, (2016). https://doi.org/10.1021/acssuschemeng.6b00016
- Z. Chen, M. Hu, B. Cui, S. Liu, D. Guo, B. Xiao, "The Effect of Bioleaching on Sewage Sludge Pyrolysis", Waste Manag., Vol.48, pp. 383-388, (2016). https://doi.org/10.1016/j.wasman.2015.10.002
- J. Piskorz, D. S. Scott, I. B. Westerberg, "Flash Pyrolysis of Sewage Sludge", Ind. Eng. Chem. Res. Process Des. Dev., Vol.25, No.1, pp. 265-270, (1986). https://doi.org/10.1021/i200032a042
- B. R. Clements, Q. Zhuang, R. Pomalis, J. Wong, D. Campbell, "Ignition Characteristics of Co-fired Mixtures of Petroleum Coke and Bituminous Coal in a Pilot-scale Furnace", Fuel, Vol.97, pp. 315-320, (2012). https://doi.org/10.1016/j.fuel.2012.01.009
- P. Abreu, C. Casaca, M. Costa, "Ash Deposition During the Co-firing of Bituminous Coal with Pine Sawdust and Olive Stones in a Laboratory Furnace", Fuel, Vol.89, No.12, pp. 4040-4048, (2010). https://doi.org/10.1016/j.fuel.2010.04.012
- S. A. Syed-Hassan, Y. Wang, S. Hu, S. Su, J. Xiang, "Thermochemical Processing of Sewage Sludge to Energy and Fuel: Fundamentals, Challenges and Considerations", Renewable and sustainable Energy reviews, Vol.80, pp. 888-913, (2017). https://doi.org/10.1016/j.rser.2017.05.262
- J. Lehto, A. Oasmaa, Y. Solantausta, M. Kyto, D. Chiaramonti, "Review of Fuel Oil Quality and Combustion of Fast Pyrolysis Bio-oils from Lignocellulosic Biomass", Appl. Energy, Vol.116, pp. 178-190, (2014). https://doi.org/10.1016/j.apenergy.2013.11.040
- D. G. B. Boocock, S. K. Konar, A. Leung, L. D. Ly, "Fuels and Chemicals from Sewage Sludge; 1. The Solvent Extraction and Composition of a Lipid from a Raw Sewage Sludge", Fuel, Vol.71, No.11, pp. 1283-1289 (1992). https://doi.org/10.1016/0016-2361(92)90055-S
- G. Pokoo-Aikins, A. Heath, R. A. Mentzer, M. S. Mannan, W. J. Rogers, M. M. El-Halwagi, "A Multi-criteria Approach to Screening Alternatives for Converting Sewage Sludge to Biodiesel", J. Loss Prev. Proc. Indus., Vol.23, No.3, pp. 412-420, (2010). https://doi.org/10.1016/j.jlp.2010.01.005
- M. N. Siddiquee, S. Rohani, "Experimental Analysis of Lipid Extraction and Biodiesel Production from Wastewater Sludge", Fuel process. Technol., Vol.92, No.12, pp. 2241-2251, (2011). https://doi.org/10.1016/j.fuproc.2011.07.018
- D. Kusdiana, S. Saka, "Effects of Water on Biodiesel Fuel Production by Supercritical Methanol Treatment", Bioresour. Technol., Vol.91, No.3, pp. 289-295, (2004). https://doi.org/10.1016/S0960-8524(03)00201-3
- D. Kargbo, "Biodiesel Production from Municipal Sewage Sludges", Energy fuels, Vol.24, pp. 2791-2794, (2010). https://doi.org/10.1021/ef1001106
-
J. Qi, F. Zhu, X. Wei, L. Zhao, Y. Xiong, X. Wu, F. Yan, "Comparison of Biodiesel Production from Sewage Sludge Obtained from the
$A_2/O$ and MBR Processes by In-situ Transesterification", Waste Manag., Vol.49, pp. 212-220, (2016). https://doi.org/10.1016/j.wasman.2016.01.029 - M Olkiewicz, N. V. Plechkova, A. Fabregat, F. Stuber, A. Fortuny, J. Font, C. Bengoa, "Efficient Extraction of Lipids from Primary Sludge using Ionic Lipids for Biodiesel Production", Separation and Purification Technology, Vol.153, pp. 118-125, (2015). https://doi.org/10.1016/j.seppur.2015.08.038
- M. Olkiewicz, M. P. Caporgno, A. fortuny, F. Stuber, A. Fabregat, J. Font, C. Bengoa, "Direct Liquid-liquid Extraction of Lipid from Municipal Sewage sludge for Biodiesel Production", Fuel Process. Tech., Vol.128, pp. 331-338, (2014). https://doi.org/10.1016/j.fuproc.2014.07.041
- M. Olkiewicz, A. Fortuny, F. Stuber, A. Fabregat, J. Font, C. Bengoa, "Effects of Pre-treatments on the Lipid Extraction and Biodiesel Production from Municipal WWTP Sludge", Fuel, Vol.141, pp. 250-257, (2015). https://doi.org/10.1016/j.fuel.2014.10.066
- C. Urrutia, N. Sangaletti-Gerhard, M. Cea, A. Suazo, A. Aliberti, R. Navia, "Two Step Esterification-transesterification Process of Wet Greasy Sewage Sludge for Biodiesel Production", Bioresource Tech., Vol.200, pp. 1044-1049, (2016). https://doi.org/10.1016/j.biortech.2015.10.039
- J. K. Kim, J. Y. Park, C. H. Jeon, K. I. Min, E. S. Yim, C. S. Jung, J. H. Lee, "Fuel Properties of Various Biodiesels Derived Vegetable Oil", J. of Korean Oil Chemists Soc., Vol.30, No.1, pp. 35-48, (2013). https://doi.org/10.12925/jkocs.2013.30.1.035
- A. Mondala, K. Liang, H. Toghiani, R. Hemandez, T. French, "Biodiesel Production by In situ Transesterification of Municipal Primary and Secondary Sludge", Bioresour. Technol., Vol.100, No.3, pp. 1203-1210, (2009). https://doi.org/10.1016/j.biortech.2008.08.020
- H. Prajitno, H. Zeb, J. Park, C. Ryu, J. Kim, "Efficent Renewable Fuel Production from Sewage Sludge Using a Supercritical Fluid Route", Fuel, Vol.200, pp. 146-152, (2017). https://doi.org/10.1016/j.fuel.2017.03.061
- W. Ma, G. Du, J. Li, Y. Fang, L. Hou, G. Chen, D. Ma, "Supercritical Water Pyrolysis of Sewage Sludge", Waste Manga., Vol.59, pp. 371-378, (2017). https://doi.org/10.1016/j.wasman.2016.10.053
- K. Malins, V. Kampars, J. Brinks, I. Neibolte, R. Murnieks, R. Kampare, "Bio-oil from Thermo-chemical Hydro-liquefaction of Wet Sewage Sludge", Bioresource Tech., Vol.187, pp. 23-29, (2015). https://doi.org/10.1016/j.biortech.2015.03.093
- Y. Wang, C. Chen, Y. Li, B. Yan, D. Pan, "Experimental Study of the Bio-oil Priductionfrom Sewage Sludge by Supercritical Conversion Process", Waste Manag., Vol.33, No.11, pp. 2408-2415, (2013). https://doi.org/10.1016/j.wasman.2013.05.021