DOI QR코드

DOI QR Code

A Review on Fuel Properties and Liquid Biofuels Production Technologies from Sewage Sludge

하수슬러지 유래 액상 바이오연료화 기술 및 연료 특성

  • Park, JoYong (Research Institute of Petroleum Technology, Korea Petroleum Quality & Distribution Authority) ;
  • Kim, Jea-Kon (Research Institute of Petroleum Technology, Korea Petroleum Quality & Distribution Authority) ;
  • Im, Hyeun-Soo (Korea Electric Power Research Institute, KEPCO)
  • 박조용 (한국석유관리원 석유기술연구소) ;
  • 김재곤 (한국석유관리원 석유기술연구소) ;
  • 임현수 (한전 전력연구원)
  • Received : 2018.04.06
  • Accepted : 2018.06.28
  • Published : 2018.06.30

Abstract

The utilization of sewage sludge for liquid biofuel production is considered as a approach for achieving better energy security, sustainable productivity and economical raw material. Thermochemical technologies of sewage sludge into energy and fuel has been considered as one of the most effective process. Generally, sewage sludge contains more than 80% of moisture, has high metal contents and 14 ~ 20 MJ/kg of calorific value. This paper reviews the technologies of converting sewage sludge to liquid biofuel via three main thermochemical conversion processes namely pyrolysis, transesterification and supercritical. The fuel properties of liquid fuels produced by different technologies from sewage sludge and definition in relevant laws for liquid biofuels in Korea are also discussed.

액상 바이오연료를 생산할 수 있는 하수슬러지는 자국의 에너지 안보와 지속가능한 생산이 가능하고 경제적인 원료로 여겨지고 있다. 열화학적 기술은 하수슬러지를 에너지화, 연료화할 수 있는 가장 효과적인 방법이다. 일반적으로 하수슬러지는 수분 함량이 80% 이상으로 높은 금속 함량과 14 ~ 20 MJ/kg의 발열량을 갖고 있다. 본 논문에서는 하수슬러지를 활용한 액상 바이오연료를 생산하는 열분해 반응, 전이에스테르화 반응, 초임계 반응 기술에 대해 살펴보고자 한다. 또한, 하수슬러지 유래 액상 바이오연료의 연료적 특성과 액상 바이오연료와 관련한 국내 법에 대해 검토하였다.

Keywords

References

  1. IEA, World Energy Outlook, International Energy Agency, (2009).
  2. J. Dufour, D. Iribarren, "Life Cycle Assessment of Biodiesel Production from Free Fatty Acid-rich Waste", Renew. Energy, Vol.38, No.1, pp. 155-162, (2012). https://doi.org/10.1016/j.renene.2011.07.016
  3. X. Zhang, S. Yan, R. D. Tyagi, R. Y. Surampalli, "Energy Balance and Greenhouse Gas Emission of Biodiesel Production from Oil Derived from Wastewater and Wastewater Sludge", Renew. Energy, Vol.55, pp. 392-403, (2013). https://doi.org/10.1016/j.renene.2012.12.046
  4. S. Dumontet, A. Scopa, S. Kerje, K. Krovacek, "The Importance of Pathogenic Organisms in Sewage and Sewage Sludge", J. Air waste Manag. Assoc., Vol.51, No.6, pp. 848-860, (2001). https://doi.org/10.1080/10473289.2001.10464313
  5. M. Campoy, A. Gomez-Barea, P. Ollero, S. Nilsson, "Gasification of Wastes in a Pilot Fluidized Bed Gasifier", Fuel Process Technol., Vol.121, pp. 63-69, (2015).
  6. M. A. Martinez, I. Fonts, L. Lazaro, J. ceamanos, "Fast Pyrolysis of Torrefied Sewage Sludge in a Fluidized Bed Reactor", Chem Eng. J., Vol.259, No.1, pp. 467-480, (2015). https://doi.org/10.1016/j.cej.2014.08.004
  7. P. Chen, Q. Xie, M. Addy, W. Zhou, Y. Liu, Y. Wang, Y. Cheng, K. Li, R. Ruan, "Utilization of Municipal Solid and Liquid Wastes for Bioenergy and Bioproducts Production", Bioresour. Technol., Vol.215, pp. 163-172, (2016). https://doi.org/10.1016/j.biortech.2016.02.094
  8. M. C. Samolada, A. A. Zabaniotou, "Comparative Assessment of Municipal Sewage Sludge Incineration, Gasification and Pyrolysis for a Sustainable Sludge-to-energy Management in Greece", Waste Manag., Vol.34, No.2, pp. 411-420, (2014). https://doi.org/10.1016/j.wasman.2013.11.003
  9. W. Rulkens, "Sewage Sludge as a Biomass Resource for the Production of Energy: Overview and Assessment of the Various Options", Energy Fuels, Vol.22, No.1, pp. 9-15, (2008). https://doi.org/10.1021/ef700267m
  10. Y. Cao, A. Pawlowski, "Life Cycle Assessment of Two Emerging Sewage Sludge to Energy Systems: Evaluating Energy and Greenhouse Gas Emissions Implications", Bioresour. Technol., Vol.127, pp. 81-91, (2013). https://doi.org/10.1016/j.biortech.2012.09.135
  11. A. Magdziarz, A. K. Dalai, J. A. Kozinski, "Chemical Composition, Character and Reactivity of Renewable Fuel Ashes", Fuel, Vol.176, No.15, pp. 135-145, (2016). https://doi.org/10.1016/j.fuel.2016.02.069
  12. P. Manara, A. Zabaniotou, "Towards Sewage Sludge Based Biofuels via Thermochemical Conversion-a Review", Renew. Sustain. Energy Rev., Vol.16, No.5, pp. 2566-2582, (2012). https://doi.org/10.1016/j.rser.2012.01.074
  13. E. A. Harrison, S. R. Oakes, M. Hysell, A. Hay, "Organic Chemicals in Sewage Sludges", Sci. Total. Environ., Vol.367, No.31, pp. 481-497, (2006). https://doi.org/10.1016/j.scitotenv.2006.04.002
  14. H. Han, S. Hu, S. S. A. Syed-Hassan, Y. Xiao, Y. Wang, J. Xu, L. Jiang, S. Su, J. Xiang, "Effects of Reaction Conditions on the Emission Behaviors of Arsenic, Cadmium and Lead during Sewage Sludge Pyrolysis", Bioresour. Technol., Vol.236, pp. 138-145, (2017). https://doi.org/10.1016/j.biortech.2017.03.112
  15. T. Spanos, A. Ene, C. S. Patronidou, C. Xatzixristou, "Temporal Variability of Sewage Sludge Heavy Metal Content from Greek Wastewater Treatment Plants", Ecol. Chem. Eng. S., Vol.23, No.2, pp. 271-283, (2016). https://doi.org/10.1515/eces-2016-0019
  16. W. Rulkens, "Sewage Sludge as a Biomass Resource for the Production of Energy: Overview and Assessment of the Various Options", Energy Fuels, Vol.22, No.1, pp. 9-15, (2008). https://doi.org/10.1021/ef700267m
  17. J. P. Cao, L. Y. Li, K. Morishita, X. B. Xiao, X. Y. Zhao, X. Y. Wei, T. Takarada, "Nitrogen Transformations during Fast Pyrolysis of Sewage Sludge", Fuel, Vol.104, pp. 1-6, (2013). https://doi.org/10.1016/j.fuel.2010.08.015
  18. M. Azuara, I. Fonts, P. arcelona, M. B. Murillo, G. Gea, "Study of Catalytic Posttreatment of the Vapours from Sewage Sludge Pyrolysis by Means of $Al_2O_3$", Fuel, Vol.107, pp. 113-121, (2013). https://doi.org/10.1016/j.fuel.2013.02.017
  19. N. Nipattummakul, I. I. Ahmed, S. Kerdsuwan, A. K. Gupta, "Hydrogen and Syngas Production from Sewage Sludge via Steam Gasification", Int. J. Hydrog. Energy, Vol.35, No. 21, pp. 11738-11745, (2010). https://doi.org/10.1016/j.ijhydene.2010.08.032
  20. S. K. Han, H. W. Song, C. S. Choi, H. Kim, S. E. Lee, "Physicochemical Properties of Sewage Sludge According to Thermal Hydrolysis Reaction Temperature", J. Korea Soc. Waste Manag., Vol.29, No.4, pp. 414-420, (2012).
  21. J. I. Son, Y. H. Hong, S. J. Cho, H. M. Yoo, K. H. Kim, "A Study on the Thermal and Carbonization Characteristic of Sewage Sludge in Fixed-bed Reactor", J. Korea Soc. Waste Manag., Vol.30, No.5, pp. 499-504, (2013). https://doi.org/10.9786/kswm.2013.30.5.499
  22. B. Jung, "Characteristics of Product Gases in High Temperature Pyrolysis of Sewage Sludges", J. Korea Soc. Waste Manag., Vol.30, No.7, pp. 748-754, (2013). https://doi.org/10.9786/kswm.2013.30.7.748
  23. J. H. Sung, Y. C. Seo, H. N. Jang, S. K. Back, B. M. Jeong, J. H. Kim, S. J. Jung, Y. J. T. Cho, "Oxy-fuel Combustion Characteristic of Dried Sewage Sludge using Circulating Fluidized Bed", J. Korea Soc. Waste Manag., Vol.31, No.6, pp. 638-645, (2014). https://doi.org/10.9786/kswm.2014.31.6.638
  24. B. R. Jeong, S. H. Yoon, Y. N. Chun, "Energy Conversion Characteristics on Microwave Pyrolysis and Gasification for a Sewage Sludge Waste", J. Korea Soc. Waste Manag., Vol.33, No.3, pp. 294-302, (2016). https://doi.org/10.9786/kswm.2016.33.3.294
  25. D. Kim, S. K. Han, E. S. Jang, S. Park, H. Kim, G. B. Lee, " The Study on Scale-up Hydrothermal Carbonization to Produce Solid Recovered Fuel from Sewage Sludge and Energy Recovery", J. Korea Soc. Waste Manag., Vol.33, No.7, pp. 683-690, (2016). https://doi.org/10.9786/kswm.2016.33.7.683
  26. O. Debono, A. Villot, "Nitrogen Products and Reaction Pathway of Nitrogen Compounds during the Pyrolysis of Various Organic Wastes", J. Anal. Appl. Pyrol., Vol.114, pp. 222-234, (2015). https://doi.org/10.1016/j.jaap.2015.06.002
  27. D. Oh, D. Kim, H. W. Song, H. Kim, K. Y. Park, "Lipid Recovery to Produce Bio-diesel and Fuel Properties of Extraction Residue from Wastewater Sludge", J. Korea Soc. Waste Manag., Vol.34, No.1, pp.56-62, (2017). https://doi.org/10.9786/kswm.2017.34.1.56
  28. S. J. Baik, I. S. Han, S. M. Hong, S. H. Kang, "Research on Drying Characteristics of Sewage Sludge by Indirect Heating Device using Thermal Oil", J. Korea Soc. Waste Manag., Vol.31, No.5, pp. 574-580, (2014). https://doi.org/10.9786/kswm.2014.31.5.574
  29. R. C. Kistler, F. Widmer, P. H. Brunner, "Behavior of Chromium, Nickel, Copper, Zinc, Cadmium, Mercury, and Lead during the Pyrolysis of Sewage Sludge", Environ. Sci. Technol., Vol.21, No.7, pp. 704-708, (1987). https://doi.org/10.1021/es00161a012
  30. C. Wang, X. Hu, M. L. Chen, Y. H. Wu, "Total Concentrations and Fractions of Cd, Cr, Pb, Cu, Ni and Zn in Sewage Sludge from Municipal and Industrial Wastewater Treatment Plants", J. Hazard Mater., Vol.119, No.17, pp. 245-249, (2005). https://doi.org/10.1016/j.jhazmat.2004.11.023
  31. J. N. Lester, "Significance and Behaviour of Heavy Metals in Waste Water Treatment Processes I. Sewage Treatment and Effluent Discharge", Sci. Total Environ., Vol.30, pp. 1-44, (1983). https://doi.org/10.1016/0048-9697(83)90002-5
  32. M. V. de Velden, R. Dewil, J. Baeyens, L. Josson, P. Lanssens, "The Distribution of Heavy Metals during Fluidized Bed Combustion of Sludge (FBSC)", J. Hazard Mater., Vol.151, No.28, pp. 96-102, (2008). https://doi.org/10.1016/j.jhazmat.2007.05.056
  33. L. Zhang, C. Xu, P. Champagne, W. Mabee, "Overview of Current Biological and Thermo-chemical Treatment Technologies for Sustainable Sludge Management", Waste Manag. Res., Vol.32, No.7, pp. 586-600, (2014). https://doi.org/10.1177/0734242X14538303
  34. E. Adar, B. Karatop, M. Ince, M. S. Bilgili, "Comparison of Methods for Sustainable Energy Management with Sewage Sludge in Turkey Based on SWOT-FAHP Analysis", Renew. Sustain. Energy Rev., Vol.62, pp. 429-440, (2016). https://doi.org/10.1016/j.rser.2016.05.007
  35. T. Damartzis, A. Zabaniotou, "Thermochemical Conversion of Biomass to Second Generation Biofuels through Integrated Process Design-a Review", Renew. Sustain. Energy Rev., Vol.15, No.1, pp. 366-378, (2011). https://doi.org/10.1016/j.rser.2010.08.003
  36. V. S. Sikarwar, M. Zhao, P. Clough, J. Yao, X. Zhong, M. Z. Memon, N. Shah, E. J. Anthony, P. S. Fennell, "An Overview of Advances in Biomass Gasification", Energy Environ. Sci., Vol.9, No.10, pp. 2939-2977, (2016). https://doi.org/10.1039/C6EE00935B
  37. T. Kan, V. Strezov, T. J. Evans, "Lignocellulosic Biomass Pyrolysis: a Review of Product Properties and Effects of Pyrolysis Parameters", Renew Sustain. Energy Rev., Vol.57, pp. 1126-1140, (2016). https://doi.org/10.1016/j.rser.2015.12.185
  38. M. Li, B. Xiao, X. Wang, J. Liu, "Consequences of Sludge Composition on Combustion Performance Derived from Thermogravimetry Analysis", Waste Manag., Vol.35, pp. 141-147, (2015). https://doi.org/10.1016/j.wasman.2014.10.004
  39. A. Magdziarz, S. Werle, "Analysis of the Combustion and Pyrolysis of Dried Sewage Sludge by TGA and MS", Waste Manag., Vol.34, No.1, pp. 174-179, (2014). https://doi.org/10.1016/j.wasman.2013.10.033
  40. J. Shao, R. Yan, H. Chen, B. Wang, D. H. Lee, D. T. Liang, "Pyrolysis Characteristics and Kinetics of Sewage Sludge by Thermogravimetry Fourier Transform Infrared Analysis", Energy Fuels, Vol.22, No.1, pp. 38-45, (2008). https://doi.org/10.1021/ef700287p
  41. L. Nowicki, S. Ledakowicz, "Comprehensive Characterization of Thermal Decomposition of Sewage Sludge by TG-MS", J. Anal. Appl. Pyrol., Vol.110, pp. 220-228, (2014). https://doi.org/10.1016/j.jaap.2014.09.004
  42. R. Fonts, A. Fullana, J. A. Conesa, F. Llavador, "Analysis of the Pyrolysis and Combustion of Different Sewage Sludges by TG", J. Anal. Appl. Pyrol., Vol.58, No.1, pp. 927-941, (2001).
  43. J. Alvarez, M. Amutio, G. Lopez, J. Bilbao, M. Olazar, "Fast Co-pyrolysis of Sewage Sludge and Lignocellulosic Biomass in a Conical Spouted Bed Reactor", Fuel, Vol.159, No.1, pp. 810-818, (2015). https://doi.org/10.1016/j.fuel.2015.07.039
  44. I. Fonts, G. Gea, M. Azuara, J. Abrego, J. Arauzo, "Sewage Sludge Pyrolysis for Liquid Production: a Review", Renew. Sustain. Energy Rev., Vol.16, No.5, pp. 2781-2805, (2012). https://doi.org/10.1016/j.rser.2012.02.070
  45. J. Alvarez, G. Lopez, M. Amutio, M. Artetxe, I. Barbarias, A. Arregi, J. Bilbao, M. Olazar, "Characterization of the Bio-oil Obtained by Fast Pyrolysis of Sewage Sludge in a Conical Spouted Bed Reactor", Fuel Process Technol., Vol.149, pp. 169-175, (2016). https://doi.org/10.1016/j.fuproc.2016.04.015
  46. M. M. Pedroza, J. F. Sousa, G. E. G. Vieira, M. B. D. Bezerra, "Characterization of the Products from the Pyrolysis of Sewage Sludge in 1 kg/h Rotating Cylinder Reactor", J. Anal. Appl. Pyrol., Vol.105, pp. 108-115, (2014). https://doi.org/10.1016/j.jaap.2013.10.009
  47. E. Pokorna, N. Postelmans, P. Jenicek, S. Schreurs, R. Carleer, J. Yperman, "Study of Bio-oils and Solids from Flash Pyrolysis of Sewage Sludges", Fuel, Vol.88, No.18, pp. 1344-1350, (2009). https://doi.org/10.1016/j.fuel.2009.02.020
  48. I. Fonts, A. Juan, G. Gea, M. B. Murillo, J. L. Sanchez, "Sewage Sludge Pyrolysis in Fluidized Bed, 1: Influence of Operational Conditions on the Product Distribution", Ind. Eng. Chem. Res., Vol.47, No.15, pp. 5376-5385, (2008). https://doi.org/10.1021/ie7017788
  49. P. T. Williams, N. Nugranad, "Comparison of Products from the Pyrolysis and Catalytic Pyrolysis of Rice Husks, Energy, Vol.25, No.6, pp. 493-513, (2000). https://doi.org/10.1016/S0360-5442(00)00009-8
  50. T. S. Nguyen, M. Zabeti, L. Lefferts, G. brem, K. Seshan, "Conversion of Lignocellulosic Biomass to Green Fuel Oil over Sodium Based Catalysts", Bioresour. Technol., Vol.142, pp. 353-360, (2013). https://doi.org/10.1016/j.biortech.2013.05.023
  51. L. Shen, D. K. Zhang, "An Experimental Study of Oil Recovery from Sewage Sludge by Low-temperature Pyrolysis in a Fluidised-bed", Fuel, Vol.82, No.4, pp. 465-472 (2003). https://doi.org/10.1016/S0016-2361(02)00294-6
  52. H. J. Park, H. S. Heo, Y. K. Park, J. H. Yim, J. K. Jeon, J. Park, C. Ryu, S. S. Kim, "Clean Bio-oil Production from Fast Pyrolysis of Sewage Sludge: Effects of Reaction Conditions and Metal Oxide Catalysts", Bioresour. Technol., Vol.101, No.1, pp. 83-85 (2010). https://doi.org/10.1016/j.biortech.2009.06.103
  53. G. Liu, M. M. Wright, Q. Zhao, R. C. Brown, "Hydrocarbon and Ammonia Production from Catalytic Pyrolysis of Sewage Sludge with Acid Pretreatment", ACS Sustain. Chem. Eng., Vol.4, No.3, pp. 1819-1826, (2016). https://doi.org/10.1021/acssuschemeng.6b00016
  54. Z. Chen, M. Hu, B. Cui, S. Liu, D. Guo, B. Xiao, "The Effect of Bioleaching on Sewage Sludge Pyrolysis", Waste Manag., Vol.48, pp. 383-388, (2016). https://doi.org/10.1016/j.wasman.2015.10.002
  55. J. Piskorz, D. S. Scott, I. B. Westerberg, "Flash Pyrolysis of Sewage Sludge", Ind. Eng. Chem. Res. Process Des. Dev., Vol.25, No.1, pp. 265-270, (1986). https://doi.org/10.1021/i200032a042
  56. B. R. Clements, Q. Zhuang, R. Pomalis, J. Wong, D. Campbell, "Ignition Characteristics of Co-fired Mixtures of Petroleum Coke and Bituminous Coal in a Pilot-scale Furnace", Fuel, Vol.97, pp. 315-320, (2012). https://doi.org/10.1016/j.fuel.2012.01.009
  57. P. Abreu, C. Casaca, M. Costa, "Ash Deposition During the Co-firing of Bituminous Coal with Pine Sawdust and Olive Stones in a Laboratory Furnace", Fuel, Vol.89, No.12, pp. 4040-4048, (2010). https://doi.org/10.1016/j.fuel.2010.04.012
  58. S. A. Syed-Hassan, Y. Wang, S. Hu, S. Su, J. Xiang, "Thermochemical Processing of Sewage Sludge to Energy and Fuel: Fundamentals, Challenges and Considerations", Renewable and sustainable Energy reviews, Vol.80, pp. 888-913, (2017). https://doi.org/10.1016/j.rser.2017.05.262
  59. J. Lehto, A. Oasmaa, Y. Solantausta, M. Kyto, D. Chiaramonti, "Review of Fuel Oil Quality and Combustion of Fast Pyrolysis Bio-oils from Lignocellulosic Biomass", Appl. Energy, Vol.116, pp. 178-190, (2014). https://doi.org/10.1016/j.apenergy.2013.11.040
  60. D. G. B. Boocock, S. K. Konar, A. Leung, L. D. Ly, "Fuels and Chemicals from Sewage Sludge; 1. The Solvent Extraction and Composition of a Lipid from a Raw Sewage Sludge", Fuel, Vol.71, No.11, pp. 1283-1289 (1992). https://doi.org/10.1016/0016-2361(92)90055-S
  61. G. Pokoo-Aikins, A. Heath, R. A. Mentzer, M. S. Mannan, W. J. Rogers, M. M. El-Halwagi, "A Multi-criteria Approach to Screening Alternatives for Converting Sewage Sludge to Biodiesel", J. Loss Prev. Proc. Indus., Vol.23, No.3, pp. 412-420, (2010). https://doi.org/10.1016/j.jlp.2010.01.005
  62. M. N. Siddiquee, S. Rohani, "Experimental Analysis of Lipid Extraction and Biodiesel Production from Wastewater Sludge", Fuel process. Technol., Vol.92, No.12, pp. 2241-2251, (2011). https://doi.org/10.1016/j.fuproc.2011.07.018
  63. D. Kusdiana, S. Saka, "Effects of Water on Biodiesel Fuel Production by Supercritical Methanol Treatment", Bioresour. Technol., Vol.91, No.3, pp. 289-295, (2004). https://doi.org/10.1016/S0960-8524(03)00201-3
  64. D. Kargbo, "Biodiesel Production from Municipal Sewage Sludges", Energy fuels, Vol.24, pp. 2791-2794, (2010). https://doi.org/10.1021/ef1001106
  65. J. Qi, F. Zhu, X. Wei, L. Zhao, Y. Xiong, X. Wu, F. Yan, "Comparison of Biodiesel Production from Sewage Sludge Obtained from the $A_2/O$ and MBR Processes by In-situ Transesterification", Waste Manag., Vol.49, pp. 212-220, (2016). https://doi.org/10.1016/j.wasman.2016.01.029
  66. M Olkiewicz, N. V. Plechkova, A. Fabregat, F. Stuber, A. Fortuny, J. Font, C. Bengoa, "Efficient Extraction of Lipids from Primary Sludge using Ionic Lipids for Biodiesel Production", Separation and Purification Technology, Vol.153, pp. 118-125, (2015). https://doi.org/10.1016/j.seppur.2015.08.038
  67. M. Olkiewicz, M. P. Caporgno, A. fortuny, F. Stuber, A. Fabregat, J. Font, C. Bengoa, "Direct Liquid-liquid Extraction of Lipid from Municipal Sewage sludge for Biodiesel Production", Fuel Process. Tech., Vol.128, pp. 331-338, (2014). https://doi.org/10.1016/j.fuproc.2014.07.041
  68. M. Olkiewicz, A. Fortuny, F. Stuber, A. Fabregat, J. Font, C. Bengoa, "Effects of Pre-treatments on the Lipid Extraction and Biodiesel Production from Municipal WWTP Sludge", Fuel, Vol.141, pp. 250-257, (2015). https://doi.org/10.1016/j.fuel.2014.10.066
  69. C. Urrutia, N. Sangaletti-Gerhard, M. Cea, A. Suazo, A. Aliberti, R. Navia, "Two Step Esterification-transesterification Process of Wet Greasy Sewage Sludge for Biodiesel Production", Bioresource Tech., Vol.200, pp. 1044-1049, (2016). https://doi.org/10.1016/j.biortech.2015.10.039
  70. J. K. Kim, J. Y. Park, C. H. Jeon, K. I. Min, E. S. Yim, C. S. Jung, J. H. Lee, "Fuel Properties of Various Biodiesels Derived Vegetable Oil", J. of Korean Oil Chemists Soc., Vol.30, No.1, pp. 35-48, (2013). https://doi.org/10.12925/jkocs.2013.30.1.035
  71. A. Mondala, K. Liang, H. Toghiani, R. Hemandez, T. French, "Biodiesel Production by In situ Transesterification of Municipal Primary and Secondary Sludge", Bioresour. Technol., Vol.100, No.3, pp. 1203-1210, (2009). https://doi.org/10.1016/j.biortech.2008.08.020
  72. H. Prajitno, H. Zeb, J. Park, C. Ryu, J. Kim, "Efficent Renewable Fuel Production from Sewage Sludge Using a Supercritical Fluid Route", Fuel, Vol.200, pp. 146-152, (2017). https://doi.org/10.1016/j.fuel.2017.03.061
  73. W. Ma, G. Du, J. Li, Y. Fang, L. Hou, G. Chen, D. Ma, "Supercritical Water Pyrolysis of Sewage Sludge", Waste Manga., Vol.59, pp. 371-378, (2017). https://doi.org/10.1016/j.wasman.2016.10.053
  74. K. Malins, V. Kampars, J. Brinks, I. Neibolte, R. Murnieks, R. Kampare, "Bio-oil from Thermo-chemical Hydro-liquefaction of Wet Sewage Sludge", Bioresource Tech., Vol.187, pp. 23-29, (2015). https://doi.org/10.1016/j.biortech.2015.03.093
  75. Y. Wang, C. Chen, Y. Li, B. Yan, D. Pan, "Experimental Study of the Bio-oil Priductionfrom Sewage Sludge by Supercritical Conversion Process", Waste Manag., Vol.33, No.11, pp. 2408-2415, (2013). https://doi.org/10.1016/j.wasman.2013.05.021