DOI QR코드

DOI QR Code

The Min-Distance Max-Quantity Assignment Algorithm for Random Type Quadratic Assignment Problem

랜덤형 2차원 할당문제의 최소 거리-최대 물동량 배정 알고리즘

  • Lee, Sang-Un (Dept. of Multimedia Eng., Gangneung-Wonju National University)
  • 이상운 (강릉원주대학교 과학기술대학 멀티미디어공학과)
  • Received : 2018.04.01
  • Accepted : 2018.06.08
  • Published : 2018.06.30

Abstract

There is no known polynomial time algorithm for random-type quadratic assignment problem(RQAP) that is a NP-complete problem. Therefore the heuristic or meta-heuristic approach are solve the approximated solution for the RQAP within polynomial time. This paper suggests polynomial time algorithm for random type quadratic assignment problem (QAP) with time complexity of $O(n^2)$. The proposed algorithm applies one-to-one matching strategy between ascending order of sum of distance for each location and descending order of sum of quantity for each facility. Then, swap the facilities for reflect the correlation of distances of locations and quantities of facilities. For the experimental data, this algorithm, in spite of $O(n^2)$ polynomial time algorithm, can be improve the solution than genetic algorithm a kind of metaheuristic method.

2차원 할당 문제는 다항시간 알고리즘이 알려지지 않은 NP-완전 문제이다. 본 논문은 위치간 거리가 일정하지 않은 랜덤형 2차원 할당 문제의 최적 해를 $O(n^2)$ 수행 복잡도로 찾을 수 있는 알고리즘을 제안하였다. 제안된 알고리즘은 단순히 거리 합을 오름차순으로, 물동량 합을 내림차순으로 정렬하여 1:1 매치시킨 최소 거리 위치에 최대 물동량 시설을 배정하는 전략을 수행하고, 위치별 거리와 시설별 물동량 상관관계를 최적으로 반영하기 위해 시설들을 교환하는 전략을 적용하였다. 실험 데이터에 적용한 결과, 제안 알고리즘은 $O(n^2)$의 다항시간 알고리즘임에도 불구하고 메타휴리스틱 방법의 일종인 유전자 알고리즘의 해를 개선할 수 있었다.

Keywords

References

  1. E. M. Loiola, N. M. M. Abreu, P. O. Boaventura-Netto, P. Hahn, and T. Querido, "A Survey for the Quadratic Assignment Problem," European Journal of Operational Research, Vol. 176, No. 2, pp. 657-690, Jan. 2007. doi:10. 1016/j.ejor.2005.09.032 https://doi.org/10.1016/j.ejor.2005.09.032
  2. P. Ji, Y. Wu, and H. Liu, "A Solution Method for the Quadratic Assignment Problem (QAP)," The 6th International Symposium on Operations Research and Its Applications (ISORA), Xinjiang, China, pp. 106-117, 2006.
  3. M. Solimanpur and A. Jafari, "Optimal Solution for the Two-dimensional Facility Layout Problem using a Branch-and-bound Algorithm," Journal of Computers and Industrial Engineering, Vol. 55, No. 3, pp. 606-619, Oct. 2008. doi:10.1016/j.cie. 008.01.018
  4. I. Mihajlovic, Z. Zivkovic, N. Strbac, D. Zivkovic, and A. Jovanovic, "Using Genetic Algorithms to Resolve Facility Layout Problem," Serbian Journal of Management, Vol. 2, No. 1, pp. 35-46, Jan. 2007.
  5. S. U. Lee, "A Reverse-Delete Algorithm for Assignment Problems," Journal of KIIT, Vol. 10, No. 8, pp. 117-126, Aug. 2012. uci:G704-001947.2012.10.8.007
  6. S. U. Lee, "Assignment Problem Algorithm Using Dual-path Competition Method," Journal of KIIT, Vol. 13, No. 12, pp. 75-83, Dec. 2015. doi:10. 4801/jkiit.2015.13.12.75
  7. L. Steinberg, "The Backboard Wiring Problem: A Placement Algorithm," SIAM Review, Vol. 3, pp. 37-50, Jan. 1961. doi:10.1137/1003003
  8. A. N. Elshafei, "Hospital Layout as a Quadratic Assignment Problem," Operations Research Quarterly, Vol. 28, No. 1, pp. 167-179, Mar. 1977. https://doi.org/10.1057/jors.1977.29
  9. S. U. Lee, "The Grid Type Quadratic Assignment Problem Algorithm," Journal of KSCI, Vol. 19, No. 4, pp. 91-99, Apr. 2014. doi:/10.9708/jksci.2014.19.4.091
  10. S. U. Lee, "The Random Type Quadratic Assignment Problem Algorithm," Journal of KSCI, Vol. 21, No. 4, pp. 81-88, Apr. 2016. doi:10. 9708/jksci.2016.21.4.081
  11. R. E. Burkard, S. E. Karisch, and F. Rendl, "QAPLIB-A Quadratic Assignment Problem Library," Journal of Global Optimization, Vol. 10, No. 4, pp. 391-403, Jun. 1997. doi:10.1023/A:1008293323270
  12. S. Tsutsui and N. Fujimoto, "Solving Quadratic Assignment Problems by Genetic Algorithms with GPU Computation: a Case Study," Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary Computation Conference, pp. 2523-2530, Jul. 2009. doi:10.1145/1570256.1570355
  13. P. A. Jensen and J. F. Bard, "Operations Research Models and Methods, Section 7.4 Facility Location Problem," John Wiley and Sons. 2003. ISBN:0-471-38004-0
  14. K. C. Chan and H. Tansri, "A Study of Genetic Crossover Operations on the Facilities Layout Problem," Computers and Industrial Engineering, Vol. 26, No. 3, pp. 537-550, Jul. 1994. doi: 10.1016/0360-8352(94)90049-3
  15. K. L. Mak, Y. S. Wong, and F. T. S. Chan, "A Genetic Algorithm for Facility Layout Problems," Computer Integrated Manufacturing Systems, Vol. 11, No. 1-2, pp. 113-127, Sep. 1998. doi:10. 1016/S0951-5240(98)00018-4 https://doi.org/10.1016/S0951-5240(98)00018-4
  16. M. A. El-Baz, "A Genetic Algorithm for Facility Layout Problems of Different Manufacturing Environments," Computers & Industrial Engineering, Vol. 47, No. 2-3, pp. 233-246, Nov. 2004. doi:10.1016/j.cie.2004.07.001
  17. S. Jannat, A. A. Khaled, and S. K. Paul, "Optimal Solution for Multi-Objective Facility Layout Problem Using Genetic Algorithm," International Conference on Industrial Engineering and Operations Management, Dhaka, Bangladesh, Jan. 2010.
  18. M. G. Misola and B. B. Navarro, "Optimal Facility Layout Problem Solution Using Genetic Algorithm," World Academy of Science, Engineering and Technology, Vol. 7, No. 8, pp. 545-550, Aug. 2013. doi:scholar.waset.org/1307-6892/16153