DOI QR코드

DOI QR Code

The Effect of Temperature on the Process of Immiscible Displacement in Pore Network

공극 구조 내 비혼성 대체 과정에서 주입 온도가 유체 거동에 미치는 영향

  • Park, Gyuryeong (Department of Energy Resources Engineering, Pukyong National University) ;
  • Kim, Seon-ok (Department of Energy Resources Engineering, Pukyong National University) ;
  • Lee, Minhee (Department of Earth Environmental Sciences, Pukyong National University) ;
  • Wang, Sookyun (Department of Energy Resources Engineering, Pukyong National University)
  • 박규령 (부경대학교 에너지자원공학과) ;
  • 김선옥 (부경대학교 에너지자원공학과) ;
  • 이민희 (부경대학교 지구환경과학과) ;
  • 왕수균 (부경대학교 에너지자원공학과)
  • Received : 2018.01.22
  • Accepted : 2018.02.28
  • Published : 2018.06.28

Abstract

The viscous force of fluids and the capillary force acting on the pore network of the porous media are important factors determining the immiscible displacement during geological $CO_2$ sequestration, these were directly affected by geological formation conditions and injection conditions. This study aimed to observe the migration and distribution of injected fluid and pore water, and quantitatively investigate displacement efficiency on various injection temperatures. This study aimed to perform micromodel experiments by applying n-hexane used as a proxy fluid for supercritical $CO_2$. In this study, immiscible displacement process from beginning of n-hexane injection to equilibrium of the distribution of the n-hexane and pore water was observed. The images from experiment were used to observe the displacement pattern and estimate the areal displacment efficiency of the n-hexane. For investigate the affects of the injection temperatures on the migration in macroscopic, migration of n-hexane in single pore was analyzed. The measurement revealed that the displacement efficiency at equilibrium state decreases as the temperature increases. The result from experiments indicate that the temperatures can affect the displacement pattern by changing the viscous forces and the capillary forces. The experimental results could provide important fundamental information on reservoir conditions and fluid injection conditions during geological $CO_2$ sequestration.

본 연구는 이산화탄소 지중저장 과정에서 주입 유체의 온도 변화가 심부 지질구조 내로 주입된 초임계 이산화탄소의 거동과 대체율에 미치는 영향을 정량적으로 규명하기 위하여 초임계 이산화탄소 대체 유체인 헥산을 적용한 마이크로모델 실험을 수행하였다. 본 실험에서는 탈이온수로 포화된 마이크로모델 내부로 헥산의 주입이 개시되는 시점부터 헥산과 공극수의 분포가 평형상태를 이루는 시점까지의 비혼성 대체 과정을 시각적으로 관찰하였다. 실험을 통하여 획득한 이미지는 분석 프로그램을 통하여 전체 공극 구조에 대한 헥산의 대체 면적비를 산정하는데 사용하였으며, 단일 공극 규모에서와 거시적 규모에서의 헥산과 공극수의 거동 및 분포 분석을 통하여 주입 유체의 온도가 비혼성 대체 과정에 미치는 영향을 규명하였다. 주입 유체의 온도 변화에 따른 관측 실험의 결과, 온도가 증가함에 따라 점도, 밀도, 계면장력 등과 같은 유체의 물성 및 공극 구조에 작용하는 모관압의 변화로 인하여 헥산의 대체 면적비는 감소하는 경향을 나타내었다. 이러한 실험 결과는 효율적인 이산화탄소 지중저장을 수행하기 위해서는 이산화탄소 주입이 이루어지는 심부 지질구조의 환경 및 주입 조건에 대한 이해가 필수적임을 시사하였다.

Keywords

References

  1. Aggelopoulos, C.A., Robin, M., Perfetti, E. and Vizika, O. (2010) $CO_2/CaCl_2$ solution interfacial tensions under $CO_2$ geological storage conditions: influence of cation valence on interfacial tension. Adv. Water Resour., v.33, p.691-697. https://doi.org/10.1016/j.advwatres.2010.04.006
  2. Aggelopoulos, C.A., Robin, M. and Vizika, O. (2011) Interfacial tensions between $CO_2$ and brine (NaCl + $CaCl_2$) at elevated pressures and temperatures: The additive effect of different salts. Adv. Water Resour., v.34, p.505-501. https://doi.org/10.1016/j.advwatres.2011.01.007
  3. Bachu, S. and Bennion, B. (2009) Dependence of $CO_2$-brine interfacial tension on aquifer pressure, Temperature and water salinity. Energy Procedia, v.1(1), p.3157-3164. https://doi.org/10.1016/j.egypro.2009.02.098
  4. Cao, S.C., Dai, S. and Jung, J. (2016) Supercritical $CO_2$ and brine displacement in geological carbon sequestration: Micromodel and pore network simulation studies. International Journal of Greenhouse Gas Control, v.44, p.104-114. https://doi.org/10.1016/j.ijggc.2015.11.026
  5. Chalbaud, C., Robin, M., Lombard, J.M., Martin, F., Bertin, H. and Egermann, P. (2010) Brine/$CO_2$ interfacial properties and effects on $CO_2$ storage in deep saline aquifers. Oil Gas Sci. Technol., v.65(4), p.541-555. https://doi.org/10.2516/ogst/2009061
  6. Chang, C., Zhou, Q., Kneafsey, T.J., Oostrom, M., Wietsma, T.W. and Yu Q. (2016) Pore-scale supercritical $CO_2$ dissolution and mass transfer under imbibition conditions. Adv. Water Resour., v.92, p.142-158. https://doi.org/10.1016/j.advwatres.2016.03.015
  7. Fobi, S. (2012) Viscous Effects of Wetting and Non-Wetting Fluids on Capillary Trapping Mechanism: A Climate Change Mitigation Strategy. Honors Bachelor of Science, Oregon State University, 31p.
  8. Grigull, U. and Schmidt, E. (1979) Properties of water and steam in Si-Unit. Second Revised and Updated Printing. Springer-Verlag, Berlin, 190p.
  9. Herring, A.L., Harper, E.J., Andersson, L., Sheppard, A., Bay, B.K. and Wildenschild, D. (2013) Effect of fluid topology on residual nonwetting phase trapping: Implications for geologic $CO_2$ sequestration. Adv. Water Resour., v.62, p.47-58. https://doi.org/10.1016/j.advwatres.2013.09.015
  10. IAPWS (2008) Release on the IAPWS Formulation 2008 for the Thermodynamic Properties of Seawater. The International Association for the Properties of Water and Steam. Berlin, Germany.
  11. IPCC (Intergovernmental Panel on Climate Change) (2005) IPCC special report on carbon dioxide capture and storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, 4.
  12. Kim, S. and Santamarina, J.C. (2014) Engineered $CO_2$ injection: The use of surfactant for enhanced sweep efficiency. International Journal of Greenhouse Gas Control, v.20, p.324-332. https://doi.org/10.1016/j.ijggc.2013.11.018
  13. Kim, Y., Wan, J., Kneafsey, T.J. and Tokunaga, T.K. (2012) Dewetting of silica surfaces upon reactions with supercritical $CO_2$ and brine: pore-scale studies in micromodels. Environ. Sci. Technol., v.46(7), p.4228-4235. https://doi.org/10.1021/es204096w
  14. Kimbrel, E.H., Herring, A.L., Armstrong, R.T., Lunati, I., Bay, B.K. and Wildenschild, D. (2015) Experimental characterization of nonwetting phase trapping and implications for geologic $CO_2$ sequestration. International Journal of Greenhouse Gas Control, v.42, p.1-15. https://doi.org/10.1016/j.ijggc.2015.07.011
  15. Lenormand, R., Touboul, E. and Zarcone, C. (1988) Numerical models and experiments on immiscible displacements in porous media. J. Fluid Mech., v.189, p.165-187. https://doi.org/10.1017/S0022112088000953
  16. Mekhtiev, S.I., Mamedov, A.A., Khalilov, Sh.Kh. and Aleskerov, M.A. (1975) Izv. Vyssh. Uchebn. Zaved. Neft. Gaz, v.3, 64.
  17. Soroush, M., Wessel-Berg, D., Torsaeter, O. and Kleppe, J. (2013) Investigating impact on flow rate and wettability on residual trapping in $CO_2$ storage in saline aquifers through relative permeability experiments. Energ. Environ. Research, v.3(2), 53p.
  18. Wang, Y., Zhang, C.Y., Wei, N., Oostrom, M., Wietsma, T.W., Li, X.C. and Bonneville, A. (2013) Experimental study of crossover from capillary to viscous fingering for supercritical $CO_2$-Water displacement in a homogeneous pore network. Environ. Sci. Technol., v.47(1), p.212-218. https://doi.org/10.1021/es3014503
  19. Yang, D., Tontiwachwuthikul, P. and Gu, Y. (2005) Interfacial interactions between reservoir brine and $CO_2$ at high pressure and elevated temperature. Energ. Fuel, v.19, p.216-223. https://doi.org/10.1021/ef049792z
  20. Zeppieri, S., Rodriguez, J. and Ramos, A.L. (2001) Interfacial tension of alkane + water systems. J. Chem. Eng. Data, v.46, p.1086-1088. https://doi.org/10.1021/je000245r
  21. Zhang, C., Oostrom, M., Grate, J.W., Wietsma, T.W. and Warner, M.G. (2011) Liquid $CO_2$ displacement of water in a dual-permeability pore network micromodel. Environ. Sci. Technol., v.45(17), p.7581-7588. https://doi.org/10.1021/es201858r
  22. Zheng, X., Mahabadi, N., Yun, T. and Jang, J. (2017) Effect of capillary and viscous force on $CO_2$ saturation and invasion pattern in the microfluidic chip. Journal of Geophysical Research, v.122, p.1634-1647.
  23. Zuo, L., Zhang, C., Falta, R.W. and Banson, S.M. (2013) Micromodel investigations of $CO_2$ exsolution from carbonated water in sedimentary rocks. Adv. Water Resour., v.53, p.188-197. https://doi.org/10.1016/j.advwatres.2012.11.004