• Title/Summary/Keyword: immiscible displacement

Search Result 8, Processing Time 0.021 seconds

The Effect of Flow Rate on the Process of Immiscible Displacement in Porous Media (다공성 매체 내 비혼성 대체 과정에서 주입 유량이 거동 양상에 미치는 영향)

  • Park, Gyuryeong;Kim, Seon-ok;Lee, Minhee;Wang, Sookyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.1
    • /
    • pp.1-13
    • /
    • 2018
  • A series of experiments using transparent micromodels with an artificial pore network etched on glass plates was performed to investigate the effects of flow rate on the migration and distribution of resident wetting porewater (deionized water) and injecting non-wetting fluid (n-hexane). Multicolored images transformed from real RGB images were used to distinguish n-hexane from porewater and pore structure. Hexane flooding followed by immiscible displacement with porewater, migration through capillary fingering, preferential flow and bypassing were observed during injection experiments. The areal displacement efficiency increases as the injection of n-hexane continues until the equilibrium reaches. Experimental results showed that the areal displacement efficiency at equilibrium increases as the flow rate increases. Close observation reveals that preferential flowpaths through larger pore bodies and throats and clusters of entrapped porewater were frequently created at lower flow rate. At higher flow rate, randomly oriented forward and lateral flowpaths of n-hexane displaces more porewater at an efficiency close to stable displacement. It may resulted from that the pore pressure of n-hexane, at higher flow rate, increases fast enough to overcome capillary pressure acting on smaller pore throats as well larger ones. Experimental results in this study may provide fundamental information on migration and distribution of immiscible fluids in subsurface porous media.

DIRECT NUMERICAL SIMULATION OF IMMISCIBLE GAS BUBBLE DISPLACEMENT IN 2D CHANNEL (2차원 관내 유동에서 불활성 기체 제거과정의 직접 수치 해석)

  • Shin, S.
    • Journal of computational fluids engineering
    • /
    • v.12 no.3
    • /
    • pp.41-46
    • /
    • 2007
  • Dynamic behavior of immiscible gas bubble attached to the wall in channel flow plays very important role in many engineering applications. Special attention has been paid to micro direct methanol fuel cell(${\mu}$DMFC) where surface tension becomes dominant factor with minor gravitational effect due to its reduced size. Therefore, displacement of $CO_2$ bubble generating on a cathode side in ${\mu}$DMFC can be very difficult and efficient removal of $CO_2$ bubbles will affect the overall machine performance considerably. We have focused our efforts on studying the dynamic behavior of immiscible bubble attached to the one side of the wall on 2D rectangular channel subject to external shear flow. We used Level Contour Reconstruction Method(LCRM) which is the simplified version of front tracking method to track the bubble interface motion. Effects of Reynolds number, Weber number, advancing/receding contact angle and property ratio on bubble detachment characteristic has been numerically identified.

The Effect of Temperature on the Process of Immiscible Displacement in Pore Network (공극 구조 내 비혼성 대체 과정에서 주입 온도가 유체 거동에 미치는 영향)

  • Park, Gyuryeong;Kim, Seon-ok;Lee, Minhee;Wang, Sookyun
    • Economic and Environmental Geology
    • /
    • v.51 no.3
    • /
    • pp.223-232
    • /
    • 2018
  • The viscous force of fluids and the capillary force acting on the pore network of the porous media are important factors determining the immiscible displacement during geological $CO_2$ sequestration, these were directly affected by geological formation conditions and injection conditions. This study aimed to observe the migration and distribution of injected fluid and pore water, and quantitatively investigate displacement efficiency on various injection temperatures. This study aimed to perform micromodel experiments by applying n-hexane used as a proxy fluid for supercritical $CO_2$. In this study, immiscible displacement process from beginning of n-hexane injection to equilibrium of the distribution of the n-hexane and pore water was observed. The images from experiment were used to observe the displacement pattern and estimate the areal displacment efficiency of the n-hexane. For investigate the affects of the injection temperatures on the migration in macroscopic, migration of n-hexane in single pore was analyzed. The measurement revealed that the displacement efficiency at equilibrium state decreases as the temperature increases. The result from experiments indicate that the temperatures can affect the displacement pattern by changing the viscous forces and the capillary forces. The experimental results could provide important fundamental information on reservoir conditions and fluid injection conditions during geological $CO_2$ sequestration.

The Effect of the Surfactant on the Migration and Distribution of Immiscible Fluids in Pore Network (계면활성제가 공극 구조 내 비혼성 유체의 거동과 분포에 미치는 영향)

  • Park, Gyuryeong;Kim, Seon-Ok;Wang, Sookyun
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.105-115
    • /
    • 2021
  • The geological CO2 sequestration in underground geological formation such as deep saline aquifers and depleted hydrocarbon reservoirs is one of the most promising options for reducing the atmospheric CO2 emissions. The process in geological CO2 sequestration involves injection of supercritical CO2 (scCO2) into porous media saturated with pore water and initiates CO2 flooding with immiscible displacement. The CO2 migration and distribution, and, consequently, the displacement efficiency is governed by the interaction of fluids. Especially, the viscous force and capillary force are controlled by geological formation conditions and injection conditions. This study aimed to estimate the effects of surfactant on interfacial tension between the immiscible fluids, scCO2 and porewater, under high pressure and high temperature conditions by using a pair of proxy fluids under standard conditions through pendant drop method. It also aimed to observe migration and distribution patterns of the immiscible fluids and estimate the effects of surfactant concentrations on the displacement efficiency of scCO2. Micromodel experiments were conducted by applying n-hexane and deionized water as proxy fluids for scCO2 and porewater. In order to quantitatively analyze the immiscible displacement phenomena by n-hexane injection in pore network, the images of migration and distribution pattern of the two fluids are acquired through a imaging system. The experimental results revealed that the addition of surfactants sharply reduces the interfacial tension between hexane and deionized water at low concentrations and approaches a constant value as the concentration increases. Also it was found that, by directly affecting the flow path of the flooding fluid at the pore scale in the porous medium, the surfactant showed the identical effect on the displacement efficiency of n-hexane at equilibrium state. The experimental observation results could provide important fundamental information on immiscible displacement of fluids in porous media and suggest the potential to improve the displacement efficiency of scCO2 by using surfactants.

Effect of Cyclic Injection on Migration and Trapping of Immiscible Fluids in Porous Media (공극 구조 내 교차 주입이 비혼성 유체의 포획 및 거동에 미치는 영향)

  • Ahn, Hyejin;Kim, Seon-ok;Lee, Minhee;Wang, Sookyun
    • Economic and Environmental Geology
    • /
    • v.52 no.1
    • /
    • pp.37-48
    • /
    • 2019
  • In geological $CO_2$ sequestration, the behavior of $CO_2$ within a reservoir can be characterized as two-phase flow in a porous media. For two phase flow, these processes include drainage, when a wetting fluid is displaced by a non-wetting fluid and imbibition, when a non-wetting fluid is displaced by a wetting fluid. In $CO_2$ sequestration, an understanding of drainage and imbibition processes and the resulting NW phase residual trapping are of critical importance to evaluate the impacts and efficiencies of these displacement process. This study aimed to observe migration and residual trapping of immiscible fluids in porous media via cyclic injection of drainage-imbibition. For this purpose, cyclic injection experiments by applying n-hexane and deionized water used as proxy fluid of $scCO_2$ and pore water were conducted in the two dimensional micromodel. The images from experiment were used to estimate the saturation and observed distribution of n-hexane and deionized water over the course drainage-imbibition cycles. Experimental results showed that n-hexane and deionized water are trapped by wettability, capillarity, dead end zone, entrapment and bypassing during $1^{st}$ drainage-imbibition cycle. Also, as cyclic injection proceeds, the flow path is simplified around the main flow path in the micromodel, and the saturation of injection fluid converges to remain constant. Experimental observation results can be used to predict the migration and distribution of $CO_2$ and pore water by reservoir environmental conditions and drainage-imbibition cycles.

Estimation of Fluid Saturations Using Agarose Standard in NMR Imaging (자기 공명 영상법에서 Agarose 표준 물질을 사용한 유체 포화도의 계산)

  • Kim, Kyung-Hoe
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.160-165
    • /
    • 1999
  • Agarose gels can be used as reference standards for the measurement of fluid properties in porous media because the relaxation properties of the gel reference standard and those of the fluid in porous media can be closely matched. The use of reference standard to determine porosity and saturation is discussed and the requirements for gel NMR properties given. The relaxtion times of agarose gels measured at 2.0 Tesla are illustrated as a function of agarose and paramagnetic impurity ($CuSO_4$) concentrations. This work shows an empirical result between agarose gel composition and gel relaxtion times. The average value for the porosity distribution is 17.7%, which compares well with the value calculated with the gravimetric analysis. Finally, two phase immiscible displacement using agarose gels as a reference standard was performed. The saturation profiles appear to be consistent with what one might calculate for a one-dimensional displacement in a uniform porous media.

  • PDF

DNAPL Removal Mechanisms and Mass Transfer Characteristics during Cosolvent-Air Flooding

  • Jeong, Seung-Woo;A. Lynn Wood;Lee, Tony R.
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.163-166
    • /
    • 2002
  • The concurrent injection of cosolvent and air, a cosolvent-air (CA) flood was recently suggested for a dense nonaqueous phase liquid (DNAPL) remediation technology. The objectives of this study were to elucidate the DNAPL removal mechanisms of the CA flood and to quantify mass transfer rate coefficients during CA flooding. DNAPL removal mechanisms were examined by evaluating the effects of air flow rate and DNAPL solubility and visually documented at a pore-scale. Two serial processes, immiscible displacement and dissolution, were experimentally and visually documented during CA flooding. Mass transfer rate coefficients (K) were computed from the data showing PCE saturation versus time. Results showed that CA floods exhibited higher K values than cosolvent floods without concurrent air injection. (This document has not been subjected to Agency review and therefore does not necessarily reflect the views of the Agency, and no official endorsement should be inferred.)

  • PDF

SIMULATION OF RELATIVE MOTION OF FLOATING BODIES INCLUDING EFFECTS OF A FENDER AND A HAWSER (방현재와 계류삭 효과를 고려한 부유체의 상대운동 모사)

  • Shin, Sangmook
    • Journal of computational fluids engineering
    • /
    • v.20 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • A developed code is applied to simulate relative motion of floating bodies in a side-by-side arrangement, including effects of a fender and a hawser. The developed code is based on the flux-difference splitting scheme for immiscible incompressible fluids and the hybrid Cartesian/immersed boundary method. To validate the developed code for free surface flows around deforming boundaries, the water wave generation is simulated, which is caused by bed movement. The computed wave profile and time histories of wave elevation are compared with other experimental and computational results. The effects of a fender and a hawser are modeled by asymmetric force acting on the floating bodies according to a relative displacement with the bounds, in which the fender and the hawser exert no force on the bodies. It has been observed that the floating body can be accelerated by a gap flow due to a phase difference caused by the free surface. Grid independency is established for the computed time history of the body velocity, based on three different size grids.