DOI QR코드

DOI QR Code

Sulfur Tolerance Effects on Sr0.92Y0.08Ti0.5Fe0.5O3-δ as an Alternative Anode in Solid Oxide Fuel Cells

  • Kim, Jun Ho (School of Chemical Engineering, Chonnam National University) ;
  • Yun, Jeong Woo (School of Chemical Engineering, Chonnam National University)
  • 투고 : 2018.02.26
  • 심사 : 2018.04.09
  • 발행 : 2018.06.30

초록

$Sr_{0.92}Y_{0.08}Ti_{0.5}Fe_{0.5}O_{3-{\delta}}$ (SYTF0.5) is investigated as an alternative anode in $H_2$ fuels containing $H_2S$ (0-200 ppm). Although additional ionic conductivity is introduced by aliovalent substitution of $Ti^{4+}$ by $Fe^{3+}$ in the B-site, the SYTF0.5 has lower electrical conductivity than that of the $Sr_{0.92}Y_{0.08}TiO_{3-{\delta}}$. Due to the mixed ionic and electronic conductive (MIEC) property exhibited in the SYTF0.5 anode, the electrochemical performance of the SYTF0.5 anode is improved, as well as the sulfur tolerance. The maximum power densities in $H_2$ at $900^{\circ}C$ for the SYT anode and the SYTF0.5 anode were 56.9 and $98.6mW/cm^2$, respectively. The maximum power density in the SYTF0.5 anode at 200 ppm of $H_2S$ concentration decreased by only 12.9% (86.3 to $75.2mW/cm^2$).

키워드

참고문헌

  1. S.C. Singhal, Solid State Ionics, 2002, 152-153, 405-410. https://doi.org/10.1016/S0167-2738(02)00349-1
  2. N.Q. Minh, J. Am. Ceram. Soc., 1993, 76, 563-588. https://doi.org/10.1111/j.1151-2916.1993.tb03645.x
  3. L. Malavasi, C.A.J. Fisher, M.S. Islam, Chem. Soc. Rev., 2010, 39, 4370-4387. https://doi.org/10.1039/b915141a
  4. Fuel Cell Handbook, 7th ed., EG&G Technical Services, Inc. for NETL of U.S. Dept. of Energy, 2004.
  5. T.H. Milby, R.C. Baselt, Am. J. Ind. Med., 1999, 35, 192. https://doi.org/10.1002/(SICI)1097-0274(199902)35:2<192::AID-AJIM11>3.0.CO;2-C
  6. M. Gong, X. Liu, J. Trembly, C. Johnson, J. Power Sources, 2007, 168, 289. https://doi.org/10.1016/j.jpowsour.2007.03.026
  7. D.K. Niakolas, Appl. Catal. A-Gen., 486, 2014, 123-142. https://doi.org/10.1016/j.apcata.2014.08.015
  8. Z. U. Din, Z.A. Zainal, Renew. Sust. Energ. Rev., 2017, 72, 1050-1066. https://doi.org/10.1016/j.rser.2016.10.012
  9. H. Madi, S. Diethelm, C. Ludwig, J.V. Herle, Int. J. Hydrogen Energ., 2016, 41, 12231-12241. https://doi.org/10.1016/j.ijhydene.2016.06.014
  10. N.U. Pujare, K.W. Semkow, A.F. Sammells, J. Electrochem. Soc., 1987, 134, 2639-2640. https://doi.org/10.1149/1.2100262
  11. N.U. Pujare, K.J. Tsai, A.F. Sammells, J. Electrochem. Soc., 1989, 136, 3362-3378. https://doi.org/10.1149/1.2096451
  12. C. Yates, J. Winnick, J. Electrochem. Soc., 1999, 148, 2841-2844.
  13. M. Liu, G.Wei, J. Luo, A.R. Sanger, K.T. Chuang, J. Electrochem. Soc., 2003, 150, A1025-A1029. https://doi.org/10.1149/1.1583715
  14. G.L. Wei, J. Luo, A.R. Sanger, K.T. Chuang, J. Electrochem. Soc., 2004, 151, A232-A237. https://doi.org/10.1149/1.1636177
  15. M. Flytzani-Stephanopoulos, M, Sakbodin, Z. Wang, Science, 2006, 312, 1508-1510. https://doi.org/10.1126/science.1125684
  16. H. Devianto, S.P. Yoon, S.W. Nam, J. Han, T.H. Lim, J. Power Sources, 2006, 159, 1147-1152. https://doi.org/10.1016/j.jpowsour.2005.11.092
  17. J.W. Yun, S.P. Yoon, J. Han, S. Park, H.S. Kim, S.W. Nam, J. Electrochem. Soc., 2010, 152, B1825-1830.
  18. S. Zha, P Tsang, Z. Cheng, M. Liu, J. Solid State Chem., 2005, 178, 1844-1850. https://doi.org/10.1016/j.jssc.2005.03.027
  19. S. Wang, M. Liu, J. Winnick, J. Solid State Electrochem., 2001, 5, 188-195. https://doi.org/10.1007/s100080000142
  20. R. Munkundan, E.L. Brosha, F.H. Garzon, Electrochem. Solid State Lett., 2004, 7, A5-A7. https://doi.org/10.1149/1.1627452
  21. Y.H. Huang, R.I. Dass, Z.L. Xing, J.B. Goodenough, Science, 2006, 312, 254-257. https://doi.org/10.1126/science.1125877
  22. Z. Han, Y. Wang, Y. Yang, L. Li, Z. Yang, M. Han, J. Alloys Compd., 2017, 703, 258-263. https://doi.org/10.1016/j.jallcom.2017.01.341
  23. N. Yan, S. Zanna, L.H. Klein, M. Roushanafshar, B.S. Amirkhiz, Y. Zeng, G. Rothenberg, P. Marcus, J. L. Luo, J. Power Sources, 2017, 343, 127-134. https://doi.org/10.1016/j.jpowsour.2017.01.048
  24. T.G. Howell, C.P. Kuhnell, T.L. Reitz, A.M. Sukeshini, R.N. Singh, J. Power Sources, 2013, 231, 279-284. https://doi.org/10.1016/j.jpowsour.2013.01.004
  25. Y. Li, Z. Wang, J. Li, X. Zhu, Y. Zhang, X. Huang, Y. Zhou, L. Zhu, Z. Lu, J. Alloys Compd., 2017, 698, 794-799. https://doi.org/10.1016/j.jallcom.2016.12.313
  26. L.Xu, Y.M. Yin, N. Zhou, Z. Wang, Z.F. Ma, Electrochem. Commun., 2017, 76, 51-54. https://doi.org/10.1016/j.elecom.2017.01.017
  27. J.W. Yun, S.P. Yoon, S. Park, H.S. Kim, S.W. Nam, Int. J. Hydrogen Energ., 2011, 36, 787-796. https://doi.org/10.1016/j.ijhydene.2010.10.060
  28. J.W. Yun, H.C. Ham, H.S. Kim, S.A. Song, S.W. Nam, S.P. Yoon, J. Electrochem. Soc., 2013, 160, F153-F161.
  29. E.K. Park, J.W. Yun, J. Electrochem. Sci. Technol., 2016, 7, 33-40. https://doi.org/10.5229/JECST.2016.7.1.33
  30. J.M. Lee, J.W. Yun, Ceram. Int., 2016, 42, 8698-8705. https://doi.org/10.1016/j.ceramint.2016.02.104
  31. E.K. Park, S. Lee, J.W. Yun, Appl. Surf. Sci., 2018, 429, 171-179. https://doi.org/10.1016/j.apsusc.2017.07.284