DOI QR코드

DOI QR Code

The Effect of Biomass Torrefaction on the Catalytic Pyrolysis of Korean Cork Oak

굴참나무 촉매열분해에 바이오매스 반탄화가 미치는 영향

  • Lee, Ji Young (Korea National Industrial Convergence Center, Korea Institute of Industrial Technology) ;
  • Lee, Hyung Won (School of Environmental Engineering, University of Seoul) ;
  • Kim, Young-Min (School of Environmental Engineering, University of Seoul) ;
  • Park, Young-Kwon (School of Environmental Engineering, University of Seoul)
  • 이지영 (한국생산기술연구원 국가산업융합지원센터) ;
  • 이형원 (서울시립대학교 환경공학부) ;
  • 김영민 (서울시립대학교 환경공학부) ;
  • 박영권 (서울시립대학교 환경공학부)
  • Received : 2018.05.02
  • Accepted : 2018.05.05
  • Published : 2018.06.10

Abstract

In this study, the effect of biomass torrefaction on the thermal and catalytic pyrolysis of cork oak was investigated. The thermal and catalytic pyrolysis behavior of cork oak (CO) and torrefied CO (TCO) were evaluated by comparing their thermogravimetric (TG) analysis results and product distributions of bio-oils obtained from the fast pyrolysis using a fixed bed reactor. TG and differential TG (DTG) curves of CO and TCO revealed that the elimination amount of hemicellulose in CO increased by applying the higher torrefaction temperature and longer torrefaction time. CO torrefaction also decreased the oil yield but increased that of solid char during the pyrolysis because the contents of cellulose and lignin in CO increased due to the elimination of hemicellulose during torrefaction. Selectivities of the levoglucosan and phenolics in TCO pyrolysis oil were higher than those in CO pyrolysis oil. The content of aromatic hydrocarbons in bio-oil increased by applying the catalytic pyrolysis of CO and TCO over HZSM-5 ($SiO_2/Al_2O_3=30$). Compared to CO, TCO showed the higher efficiency on the formation of aromatic hydrocarbons via the catalytic pyrolysis over HZSM-5 and the efficiency was maximized by applying the higher torrefaction and catalytic pyrolysis reaction temperatures of 280 and $600^{\circ}C$, respectively.

본 연구에서는 굴참나무의 열분해 및 촉매 열분해에 바이오매스 반탄화가 미치는 영향에 대한 연구를 수행하였다. 굴참나무와 반탄화된 굴참나무의 열분해 및 촉매 열분해 거동은 열중량분석 결과와 회분식반응기를 이용한 급속열분해 반응에서 얻어진 바이오오일의 생성물분포를 비교하여 평가하였다. 굴참나무와 반탄화된 굴참나무의 열중량 곡선 및 미중열중량곡선은 굴참나무 내 헤미셀룰로오스의 제거량은 반탄화 온도 및 시간을 증가시킴에 따라 증가됨을 나타내었다. 굴참나무의 반탄화과정에서 헤미셀룰로오스의 제거로 굴참나무 내 셀룰로오스와 리그닌의 함량이 증가되기 때문에 열분해 과정에서 오일의 수율은 감소하고 고형 촤 수율은 증가하였다. 반탄화 굴참나무의 열분해 오일 중 레보글루코산과 페놀류의 선택도는 굴참나무 열분해 오일에 비해 높았다. 바이오오일 중 방향족 화합물의 함량은 HZSM-5 ($SiO_2/Al_2O_3=30$) 상에서 굴참나무 및 반탄화된 굴참나무의 촉매열분해를 적용함으로써 증가되었다. 굴참나무에 비해, 반탄화 굴참나무는 HZSM-5를 이용한 촉매 열분해를 통한 방향족화합물 형성에 더 높은 효율을 보였고 더 높은 반탄화 온도($280^{\circ}C$) 및 반응온도($600^{\circ}C$)를 적용함으로써 극대화되었다.

Keywords

References

  1. J. S. Cha, S. H. Park, S. C. Jung, C. Ryu, J. K. Jeon, M. C. Shin, and Y. K. Park, Production and utilization of biochar: A review, J. Ind. Eng. Chem., 40, 1-15 (2016). https://doi.org/10.1016/j.jiec.2016.06.002
  2. H. W. Lee, Y. M. Kim, J. Jae, J. K. Jeon, S. C. Jung, S. C. Kim, and Y. K. Park, Production of aromatic hydrocarbons via catalytic co-pyrolysis of torrefied cellulose and polypropylene, Energy Convers. Manag., 129, 81-88 (2016). https://doi.org/10.1016/j.enconman.2016.10.001
  3. J. Corton, I. S. Donnison, M. Patel, L. Buhle, E. Hodgson, M. Wachendorf, A. Bridgwater, G. Allison, and M. D. Fraser, Expanding the biomass resource: sustainable oil production via fast pyrolysis of low input high diversity biomass and the potential integration of thermochemical and biological conversion routes, Appl. Energy, 177, 852-862 (2016). https://doi.org/10.1016/j.apenergy.2016.05.088
  4. H. Shafaghat, P. S. Rezaei, D. Ro, J. Jae, B. S. Kim, S. C. Jung, B. H. Sung, and Y. K. Park, In-situ catalytic pyrolysis of lignin in a bench-scale fixed bed pyrolyzer, J. Ind. Eng. Chem., 54, 447-453 (2017). https://doi.org/10.1016/j.jiec.2017.06.026
  5. H. Lee, Y. M. Kim, I. G. Lee, J. K. Jeon, S. C. Jung, J. D. Chung, W. G. Choi, and Y. K. Park, Recent advances in the catalytic hydrodeoxygenation of bio-oil, Korean J. Chem. Eng., 33(2), 3299-3315 (2016). https://doi.org/10.1007/s11814-016-0214-3
  6. H. Kim, H. Shafaghat, J. K. Kim, B. S. Kang, J. K. Jeon, S. C. Jung, I. G. Lee, and Y. K. Park, Stabilization of bio-oil over a low cost dolomite catalyst, Korean J. Chem. Eng., 35(4), 922-925 (2018). https://doi.org/10.1007/s11814-018-0002-3
  7. J. Meng, J. Park, D. Tilotta, and S. Park, The effect of torrefaction on the chemistry of fast pyrolysis bio-oil, Bioresour. Technol., 111, 439-446 (2012). https://doi.org/10.1016/j.biortech.2012.01.159
  8. S. Sadaka and S. Negi, Improvements of biomass physical and thermochemical characteristics via torrefaction process, Environ. Prog. Sustain. Energy, 28, 427-434 (2009). https://doi.org/10.1002/ep.10392
  9. Y. M. Kim, J. Jae, B. S. Kim, Y. Hong, S. C. Jung, and Y. K. Park, Catalytic co-pyrolysis of torrefied yellow poplar and high-density polyethylene using microporous HZSM-5 and mesoporous Al-MCM-41 catalysts, Energy Convers. Manag., 149, 966-973 (2017). https://doi.org/10.1016/j.enconman.2017.04.033
  10. S. Neupane, S. Adhikari, Z. Wang, A. J. Ragauskas, and Y. Pu, Effect of torrefaction on biomass structure and hydrocarbon production from fast pyrolysis, Green Chem., 17, 2406-2417 (2015). https://doi.org/10.1039/C4GC02383H
  11. D. Chen, Y. Li, M. Deng, J. Wang, M. Chen, B. Yan, and Q. Yuan, Effect of torrefaction pretreatment and catalytic pyrolysis on the pyrolysis poly-generation of pine wood, Bioresour. Technol., 214, 615-622 (2016). https://doi.org/10.1016/j.biortech.2016.04.058
  12. L. E. Arteaga-Perez, O. G. Capiro, R. Romero, A. Delgado, P. Olivera, F. Ronsse, and R. Jimenez, In situ catalytic fast pyrolysis of crude and torrefied Eucalyptus globulus using carbon aerogel-supported catalysts, Energy, 128, 701-712 (2017). https://doi.org/10.1016/j.energy.2017.04.024
  13. V. Srinivasan, S. Adhikari, S. A. Chattanathan, M. Tu, and S. Park, Catalytic pyrolysis of raw and thermally treated cellulose using different acidic zeolites, BioEnergy Res., 7, 867-875 (2014). https://doi.org/10.1007/s12155-014-9426-8
  14. S. Adhikari, V. Srinivasan, and O. Fasina, Catalytic pyrolysis of raw and thermally treated lignin using different acidic zeolites, Energy Fuels, 28, 4532-4538 (2014). https://doi.org/10.1021/ef500902x
  15. R. Mahadevan, S. Adhikari, R. Shakya, K. Wang, D. C. Dayton, M. Li, Y. Pu, and A. J. Ragauskas, Effect of torrefaction temperature on lignin macromolecule and product distribution from HZSM-5 catalytic pyrolysis, J. Anal. Appl. Pyrolysis, 122, 95-105 (2016). https://doi.org/10.1016/j.jaap.2016.10.011
  16. M. Atienza-Martinez, I. Rubio, I. Fonts, J. Ceamanos, and G. Gea, Effect of torrefaction on the catalytic post-treatment of sewage sludge pyrolysis vapors using ${\gamma}-Al_2O_3$, Chem. Eng. J., 308, 264-274 (2017). https://doi.org/10.1016/j.cej.2016.09.042
  17. H. W. Lee, Y. M. Kim, J. Jae, B. H. Sung, S. C. Jung, S. C. Kim, J. K. Jeon, and Y. K. Park, Catalytic pyrolysis of lignin using a two-stage fixed bed reactor comprised of in-situ natural zeolite and ex-situ HZSM-5, J. Anal. Appl. Pyrolysis, 122, 282-288 (2016). https://doi.org/10.1016/j.jaap.2016.09.015
  18. Y. M. Kim, B. S. Kim, K. S. Chea, T. S. Jo, S. Kim, and Y. K. Park, Ex-situ catalytic pyrolysis of Korean native oak tree over microporous zeolites, Appl. Chem. Eng., 27(4), 407-414 (2016). https://doi.org/10.14478/ace.2016.1051
  19. E. Barta-Rajnai, L. Wang, Z. Sebestyen, Z. Barta, R. Khalil, O. Skreiberg, M. Gronli, E. Jakab, and Z. Czegeny, Effect of temperature and duration of torrefaction on the thermal behavior of stem wood, bark, and stump of spruce, Energy Procedia, 105, 551-556 (2017). https://doi.org/10.1016/j.egypro.2017.03.355
  20. A. Zheng, Z. Zhao, S. Chang, Z. Huang, X. Wang, F. He, and A. Li, Effect of torrefaction on structure and fast pyrolysis behavior of corncobs, Bioresour. Technol., 128, 370-377 (2013). https://doi.org/10.1016/j.biortech.2012.10.067
  21. A. Zheng, Z. Zhao, Z. Huang, K. Zhao, G. Wei, X. Wang, F. He, and H. Li, Catalytic fast pyrolysis of biomass pretreated by torrefaction with varying severity, Energy Fuel, 28, 5804-5811 (2014). https://doi.org/10.1021/ef500892k