• Title/Summary/Keyword: aromatic hydrocarbons

Search Result 737, Processing Time 0.028 seconds

Characteristics of Aromatic Hydrocarbons Measured in an As-built Building (입주 전 신축 건물의 사무실내 방향족 탄화수소의 농도 특성)

  • 나광삼;배귀남;김용표
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.5
    • /
    • pp.545-552
    • /
    • 2000
  • Eight aromatic hydrocarbons were quantified in a newly constructed building before occupancy during the period of November 1997 to January 1998. Air samples were collected in 6 L stainless steel canisters for 8 hours based on working hour. It was found that the measured total concentration of aromatic hydrocarbons decreases rapidly with time up to a steady-state value. However, the fractions for each aromatic hydrocarbon were greatly changed with time. The concentration ratios of indoor to outdoor for aromatic hydrocarbons are greater than 1 during early period of the measurement, and the ratios decrease with time. The concentrations of toluene, m+p-xylene, ethylbenzene, and o-xylene are much higher than those of styrene, 1, 2, 4-trimethylbenzene, and 1, 3, 5-f trimethylbenzene in indoor air. The concentration fractions of m+p-xylene, ethylbenzed, and o-xylene in indoor air are about twice as hight as those in outdoor air measured during the similar period. It was concluded that the aromatic hydrocarbons were emitted from building materials, paints, and adhesives in an-built building.

  • PDF

In Vitro Mechanistic Studies of Photogenotoxicity of Polycyclic Aromatic Hydrocarbons

  • Park, Jong-Hoon
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.106-106
    • /
    • 2003
  • Many polycyclic aromatic hydrocarbons (PAH) are acutely toxic to fish and other aquatic organisms in the presence of environmentally realistic intensities of solar ultraviolet radiation (SUVR). The phototoxicity of polycyclic aromatic hydrocarbons (PAHs) occurs through photodynamic activation of PAH compounds. Oxygen molecules react as quenchers with excited triplet states of PAHs producing reactive oxygen species (ROS).(omitted)

  • PDF

Excimer Fluorescence Quenching of Poly (styrene-co-acrylic acid)-Eu Complex by Simple Hydrocarbons in Tetrahydrofuran Solutions

  • Park, Doo-Hee;Kim, Kang-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.1
    • /
    • pp.42-45
    • /
    • 1986
  • Quenching of excimer fluorescence from polystyrene-acrylic acid copolymers containing $Eu^{3+}$ has been studied in tetrahydrofuran solution using simple aromatic hydrocarbons as quenchers under steady-state conditions. Aromatic hydrocarbons quenched collisionally the excimer fluorescence and their rate constants of quenching were determined. The magnitude of quenching constant is interpreted in terms of the cube root of the molar volume of quencher. Cycloalkanes were not effective in quenching the excimer fluorescence possibly due to different solubility characteristics from aromatic hydrocarbons.

Characterization of Aromatic Hydrocarbon Degrading Bacteria Isolated from Pine Litter (솔잎 퇴적물에서 추출한 방향족 탄화수소물질 분해 박테리아의 동정)

  • Song, Yoon-Jae
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.4
    • /
    • pp.333-339
    • /
    • 2009
  • Using a novel pine needle agar, fifteen bacterial species were isolated from pine litter. These bacteria were able to degrade aromatic hydrocarbons derived from lignin and utilize the ortho-cleavage of the $\beta$-ketoadipate pathway to degrade protocatechuate or catechol. A different utilization array of aromatic hydrocarbons by these bacteria was also determined. This study provides the information on bacterial species living in pine litter and suggests that these bacteria have metabolic abilities to utilize aromatic hydrocarbons derived from lignin biodegradation.

A Study on the Characterization of Atmospheric Dry Deposition for Polycyclic aromatic hydrocarbons Measured in Seoul (서울 지역의 PAHs(Polycyclic aromatic hydrocarbons)의 건식 침적량 특성의 연구)

  • 이승묵;이지이;한영지;배수야;윤희정;정장표;이동수
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.04a
    • /
    • pp.94-96
    • /
    • 2000
  • Polycyclic aromatic hydrocarbons(다환방향족 탄화수소류: 이하 PAHs)는 여러 가지 오염원에서 배출되어 환경계에서 이동하는 중요한 화합물질 그룹중의 하나이다. 대부분의 PAHs는 발암물질이라고 의심이 가는 물질로써 여러 가지 형태의 배열로 연결되어 있는 두개 혹은 그 이상의 방향족 고리로 구성되어 있다 PAHs의 대기에서의 침적은 가스상과 입자상 물질의 비나 눈에 의한 제거, 입자상 물질의 건식침적 및 가스상 물질의 대기-수체간 교환에 의하여 이루어진다. (중략)

  • PDF

Linkage Between Biodegradation of Polycyclic Aromatic Hydrocarbons and Phospholipid Profiles in Soil Isolates

  • Nam, Kyoung-Phile;Moon, Hee-Sun;Kim, Jae-Young;Kukor, Jerome-J.
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.77-83
    • /
    • 2002
  • A bacterial consortium capable of utilizing a variety of polycyclic aromatic hydrocarbons has been isolated from a former manufactured gas plant site. The consortium consisted of four members including Arthrobacter sp., Burkholderia sp., Ochrobacterium sp., and Alcaligenes sp., which were identified and characterized by the patterns of fatty acid methyl esters (FAME analysis) and carbon source utilization (BIOLOG system). With the individual members, the biodegradation characteristics of aromatic hydrocarbons depending on different growth substrates were determined. FAME analyses demonstrated that microbial fatty acid profiles changed to significant extents in response to different carbon sources, and hence, such shift profiles may be informative to characterize the biodegradation potential of a bacterium or microbial community.

Atmospheric Behaviors of Polycyclic Aromatic Hydrocarbons and Nitropolycyclic Aromatic Hydrocarbons in East Asia

  • Hayakawa, Kazuichi;Tang, Ning;Kameda, Takayuki;Toriba, Akira
    • Asian Journal of Atmospheric Environment
    • /
    • v.1 no.1
    • /
    • pp.19-27
    • /
    • 2007
  • Hazardous polycyclic aromatic hydrocarbons (PAHs) and nitropolycyclic aromatic hydrocarbons (NPAHs) are mainly originated from imperfect combustion of fossil fuels such as petroleum and coal. The consumptions of not only petroleum but also coal have been increasing in the East Asian countries. This review describes the result of international collaboration research concerning characteristics and major contributors of atmospheric PAHs and NPAHs in cities in Japan, Korea, China and Russia. We collected airborne particulates in ten cities in the above countries and six PAHs and eleven NPAHs were determined by HPLC methods using fluorescence and chemiluminescence detections. The total PAH concentrations were much higher in Chinese cities (Fushun, Tieling, Shenyang and Beijing) than those in other cities (Vladivostok, Busan, Kanazawa, Kitakyushu, Sapporo and Tokyo). The total NPAH concentrations were also higher in Chinese cities than those in the other cities. The [NPAH]/[corresponding PAH] ratios are much larger in diesel-engine exhaust particulates than those in coal-burning particulates. The [1-nitropyrene]/[pyrene] ratio of airborne particulates was much smaller in the four Chinese cities, suggesting that coal combustion systems such as coal heaters were the main contributors. On the other hand, the ratios were larger in Korean and Japanese cities, suggesting the large contribution of diesel-engine vehicles.

Distribution and Source of Atmospheric Polycyclic Aromatic Hydrocarbons and Nitropolycyclic Aromatic Hydrocarbons in Tieling City, Liaoning Province, a Typical Local City in Northeast China

  • Tang, Ning;Araki, Yuki;Tamura, Kenji;Dong, Lijun;Zhang, Xuemei;Liu, Qiuhua;Ji, Ruonan;Kameda, Takayuki;Toriba, Akira;Hayakawa, Kazuichi
    • Asian Journal of Atmospheric Environment
    • /
    • v.3 no.1
    • /
    • pp.52-58
    • /
    • 2009
  • Airborne particulates were collected in three different size fractions (>7 ${\mu}m$; 2.1-7 ${\mu}m$; < 2.1 ${\mu}m$) by using Andersen low-volume air samplers at three sites in Tieling city, Liaoning Province, a typical local city in northeast China, in every season during the period from July 2003 to May 2004. Nine polycyclic aromatic hydrocarbons (PAHs) and seven nitropolycyclic aromatic hydrocarbons (NPAHs) in the airborne particulates were determined by HPLC with fluorescence and chemiluminescence detection, respectively. The mean total concentrations of the nine PAHs and seven NPAHs were highest at The mixed residential and light industrial site, and lowest at the residential site near the suburbs. At all sites, more than 70% of the total PAHs and more than 60% of the total NPAHs were found in the finest particulate (< 2.1 ${\mu}m$) fraction. Both cluster analysis and several diagnostic ratios showed that the major contributors of PAHs and NPAHs in airborne particulates were coal combustion systems such as domestic stoves and coal boilers in all seasons in Tieling city.

A combined approach to remediate polycyclic aromatic hydrocarbons at a former manufactured gas plant site

  • Kyoungphile Nam;Kim, Jae-Young
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.103-106
    • /
    • 2001
  • A remediation technology consisting of biodegradation and a modified Fenton reaction was developed to degrade mixtures of polycyclic aromatic hydrocarbons (PAHs) at a former manufactured gas plant (MGP) site. The original Fenton reaction (i.e., $H_2O$$_2$ + Fe$^{2+}$) was modified to be biocompatible by using ferric ions and chelating agents such as catechol and gallic acid. The modified reaction was effective in degrading PAHs at near neutral pH and thus was compatible with biodegradation. By the combined treatment of the modified Fenton reaction and biodegradation, more than 98% of 2- or 3-ring hydrocarbons and between 70 and 85% of 4- or 5-ring compounds were degraded in the MGP soil, while maintaining its pH about 6.6.

  • PDF

탈질조건을 이용한 유류물질 생분해 기초연구

  • 오인석;장순웅;이시진
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.368-371
    • /
    • 2003
  • Leaking underground storage tanks are a major source of groundwater contamination by petroleum hydrocarbons. Bioremediation of aromatic hydrocarbons in groundwater and sediments is often limited by dissolved oxygen. Aerobic bioremediation has been highly effective in the remediation of many fuel releases, but Many aromatic hydrocarbons degrade very slowly under anaerobic conditions. Nitrate is a good alternative electron acceptor to oxygen and denitrifying bacteria are commonly found in the subsurface and in association with contaminated aquifer materials. Because nitrate is less expensive and more soluble than oxygen. it may be more economical to restore fuel-contaminated aquifers using nitrate rather than oxygen. This study show that biodegradation of BTEX and MTBE is enhanced by the nitrate-amended microcosms under aerobic/anaerobic conditons. Although aromatic hydrocarbons degrade very slowly under anaerobic conditions. Biodegradaton was observed for all of the test compounds.

  • PDF