DOI QR코드

DOI QR Code

Potential of Coal Gasification Slag as an Alkali-activated Cement

석탄가스화 복합발전 슬래그의 알칼리 활성 시멘트로서의 가능성

  • Kim, Byoungkwan (University of Science & Technology) ;
  • Lee, Sujeong (University of Science & Technology) ;
  • Chon, Chul-Min (Geological Environment Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Choi, Hong-Shik (Department of Urban and Civil Engineering, Chung Cheong University)
  • 김병관 (과학기술연합대학원대학교) ;
  • 이수정 (과학기술연합대학원대학교) ;
  • 전철민 (한국지질자원연구원 지질환경연구본부) ;
  • 최홍식 (충청대학교 도시건설정보과)
  • Received : 2018.02.05
  • Accepted : 2018.03.23
  • Published : 2018.04.30

Abstract

Integrated gasification combined cycle (IGCC) is a next generation energy production technology that converts coal into syngas with enhanced power generation efficiency and environmental performance. IGCC produces almost coal gasification slag as the solid by-product. IGCC slag is generated about 140,000 tons for a year although recycling of it is still in the early stages. We evaluated the potential of IGCC slag which is generated from a pilot plant in South Korea as an alkali-activated cement. Samples which were activated with the combined activator of sodium silicate solution and caustic soda had an average compressive strength of 4.5 MPa, showing expansion. Expansion of the alkali-activated slag was presumed to be caused by free CaO in the slag, although it was not detected by the ethylene glycol method. Samples that were activated with the combined activator of sodium aluminate and caustic soda had an average compressive strength of 10 MPa. Hydroxy sodalite and $C_3AH_6$ were found to be the new crystalline phases. IGCC slag can be used as an alkali-activated material, but the strength performance should be improved with proper mix design approach to calculate optimum proportions which can alleviate the expansion issue at the same time.

석탄가스화 복합발전(IGCC)은 석탄을 합성가스로 전환시키는 친환경, 고효율 차세대 에너지 생산기술이다. IGCC 공정의 부산물은 대부분 슬래그 형태로 배출된다. IGCC 슬래그는 연간 약 14만톤이 발생되지만 재활용은 아직 초기단계이다. 본 연구에서는 국내 한 실증 설비에서 배출된 IGCC 슬래그의 알칼리 활성 시멘트로서의 가능성에 대해 평가하였다. IGCC 슬래그를 규산소다 수용액과 가성소다를 혼합한 알칼리 자극제로 양생한 시료는 평균 4.5 MPa의 압축강도를 나타내었으나 다소 팽창하였다. 에틸렌 글리콜법으로 검출되지 않을 정도의 미량의 유리석회(free CaO)가 원인일 것으로 추측되었다. 한편 IGCC 슬래그를 알루민산 소다와 가성소다를 혼합한 알칼리 자극제로 양생한 시료는 평균 10 MPa의 압축강도를 나타내었으며 수산화소달라이트와 $C_3AH_6$가 새로운 결정상으로 생성되었다. IGCC 슬래그는 알칼리 활성 시멘트로서 활용이 가능할 것으로 평가되지만 강도 성능의 향상과 팽창 문제를 완화시킬 수 있으며 최적의 배합비율을 도출 및 적절한 배합법을 포함하는 정량적인 접근이 필요할 것으로 판단된다.

Keywords

References

  1. Krishnamoorthy, V. and Pisupati, S. V., 2015 : A critical review of mineral matter related issues during gasification of coal in fixed, fluidized, and entrained flow gasifiers, Energies, 8(9), pp.10430-10463. https://doi.org/10.3390/en80910430
  2. Maurstad, O., 2005 : An overview of Coal based Interg- rated Gasfication Combined Cycle (IGCC) Technology, pp1-3, MIT LFEE, Cambridge.
  3. Descamps, C., Bouallou, C., and Kanniche, M., 2008 : Efficiency of an Integrated Gasification Combined Cycle (IGCC) power plant including $CO_2$ removal, Energy, 33, pp.874-881. https://doi.org/10.1016/j.energy.2007.07.013
  4. D. An, 2007 : Current status and prospect of Integrated Gasification Combined Cycle (IGCC) business, Journal of Electrical World Monthly Magazine, 370, pp.12-16.
  5. A. Y. Ilyushechkin et al., 2012 : IGCC solids disposal and utilisation, Final Report for ANLEC project 5-0710-0065, pp.66-76, CSIRO, Australia.
  6. Wang, T. and Stiegel, G. J., 2016 : Intergrated Gasficiation Combined Cycle (IGCC) Technologies, Chapter 14, pp463-494, Woodhead Publishing, UK.
  7. Acosta, A. et al., 2001 : Physico-chemical characterization of slag waste coming from GICC thermal power plant, Materials Letters, 50, pp.246-250. https://doi.org/10.1016/S0167-577X(01)00233-6
  8. Acosta, A. et al., 2002 : Thermal and sintering characteri- zation of IGCC slag, Journal of Thermal Analysis and Calorimetry, 67, pp.249-255. https://doi.org/10.1023/A:1013722905517
  9. Song, W. et al., 2009 : Fusibility and flow properties of coal ash and slag, Fuel, 88(2), pp.297-304. https://doi.org/10.1016/j.fuel.2008.09.015
  10. Kim, Y., Kim, S. Y., and Chae, T. S., 2017 : Effects of manufacturing conditions on physical properties of integ-rated gasification combined cycle (IGCC) slag geopolymer, Journal of Ceramic Processing Research, 18(3), pp.214- 219.
  11. World Engergy Council, 2016 : Wolrd Energy Resources Coal 2016, pp.12-13, UK.
  12. Choudhry, V. and Hadley, S. R., 1993 : Utilization of coal gasficiation slag: An overview, in Clean Energy from Waste and Coal, ACS symposium series, 515, pp253-263.
  13. Acosta, A. et al., 2002 : Utilisation of IGCC slag and clay steriles in soft mud bricks (by pressing) for use in building bricks manufacturing, Journal of Waste Management, 22, pp.887-891. https://doi.org/10.1016/S0956-053X(02)00075-2
  14. Martin, I. I., Echeverria, A. A., and Garcia-Romero, E., 2013 : Recycling of residual IGCC slags and their benefits as degreasers in ceramics, Journal of Environmental Management, 129, pp.1-8.
  15. Shi, C., Roy, D., and Krivenko, P., 2006 : Alkali-activated cements and concretes, chapter 8, pp.220-230, Taylor & Francis group, USA.
  16. Williams, R. P. and Van Riessen, A., 2010 : Determination of the reactive component of fly ashes for geopolymer production using XRF and XRD, Fuel, 89, pp.3683-3692. https://doi.org/10.1016/j.fuel.2010.07.031
  17. Javellana, M. P. and Jawed, I., 1982 : Extration of free lime in portland cement and cliker by ethylene glycol, Cement and Concrete Research, 12, pp.399-403. https://doi.org/10.1016/0008-8846(82)90088-6
  18. Kantro, D. L., 1980 : Influence of water-reducing ad- mixtures on properties of cement paste−a miniature slump test, Cement, Concrete and Aggregates, 2(2), pp.95-102. https://doi.org/10.1520/CCA10190J
  19. Provis, J. L. and Van Deventer, J. S. J., 2009 : Geopolymers structure, processing, properties and industrial applications, Chapter 3, pp37-49, Woodhead Publishing, UK.
  20. Wang, P. Z., Trettin, R., and Rudert, V., 2004 : Effect of fineness and particle size distribution ofgranulated blast-furnace slag on the hydraulic reactivity in cement systems, Advances in Cement Research, 17(4), pp.161-166. https://doi.org/10.1680/adcr.2005.17.4.161
  21. Li, C., Sun, H., and Li, L., 2010 : A review: The comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements. Cement and Concrete Research, 40(9), pp.1341-1349. https://doi.org/10.1016/j.cemconres.2010.03.020
  22. Kim, H. B. and Oh, M., 2001 : Investigation of corrosion mechanism by analyses of spent chromia refractory from a coal gasifier, Journal of energy engineering, 13(4), pp.281- 290.
  23. Wang, P. and Massoudi, M., 2013 : Slag behavior in gasifiers. Part I: Influence of coal properties and gasi- fication conditions, Energies, 6(2), pp.784-806. https://doi.org/10.3390/en6020784
  24. Rida, M. A. and Harb, F., 2014 : Synthesis and characteri- zation of amorphous silica nanoparitcles from aqueous silicates uisng cationic surfactants, Journal of Metals, Materials and Minerals, 24(1), pp.37-42.
  25. Vempati, R. K. et al., 1994 : Fractionation and characteri- zation of Texas lignite class 'F' fly ash by XRD, TGA, FTIR, and SFM, Cmenet and Concrete Research, 24(6), pp.1153-1164. https://doi.org/10.1016/0008-8846(94)90039-6
  26. Li, H. X., Qiu, X. S., and Tang, Y. X., 2008 : Ash melting behavior by Fourier transform infraed spectroscopy, Journal of Chnia University of Mining & Technology, 18, pp.245-249. https://doi.org/10.1016/S1006-1266(08)60052-8
  27. Wu, X. R. et al., 2015 : Synthesis, structure characterization and magnetic property of $(Mg_{1-y}Fe_y)(Al_{0.4}Cr_xFe_{1.6-x})O_4$ spinel solid solution, Material Science and Environmental Engineering: Proceedings of the 3rd Annual 2015 ICMSE, pp.109-113, China, 5-6 June 2015, CRC press, US, 2015.
  28. De Bock, L. P. and Van den Bergh, H., 2004 : Stainless steel slags in hydraulic bound mixtures for road con- struction, two case stuides in Belgium, International RILEM Conference on the Use of Recycled Materials in Buildings and Structures, pp.1095-1104, MSEE,
  29. Wang, G., 2010 : Determination of the expansion force of coarse steel slag aggregate, Construction and Building Materials, 24, pp.1961-1966. https://doi.org/10.1016/j.conbuildmat.2010.04.004
  30. Aydilek, A. H., 2015 : Geothecnical and environmental impacts of steel slag use in highway construction, University of Maryland, Final report.
  31. Vaverka, J. and Sakurai, K., 2014 : Quantitative deter- mination of free lime amount in steel making slag by X-ray diffraction. ISIJ International, 54(6), pp.1334-1337. https://doi.org/10.2355/isijinternational.54.1334
  32. Van Riessen, A. and Chen-Tan, N., 2013 : Beneficiation of collie fly ash for synthesis of geopolymer Part 2 - Geopolymers, Fuel, 111, pp.829-835. https://doi.org/10.1016/j.fuel.2013.04.015
  33. Johnson, E. B. G. and Arshad, S. E., 2014 : Hydrothermally synthesized zeolites based on kaolinite: A review, Applied Clay Science, 97-98, pp.215-221. https://doi.org/10.1016/j.clay.2014.06.005
  34. Lee, S. et al., 2016 : Impact of activator type on the immobilisation of lead in fly ash-based geopolymer, Journal of Hazardous Materials, 305, pp.59-66. https://doi.org/10.1016/j.jhazmat.2015.11.023
  35. Lothenbach, B., Pelletier-Chaignat, L., and Winnefeld, F., 2012 : Stability in the system $CaO-Al_2O_3-H_2O$, Cement and Concrete Research, 42, pp.1621-1634. https://doi.org/10.1016/j.cemconres.2012.09.002
  36. Fernandez-Jimenez, A. and Puertas, F., 2002 : The alkali-silica reaction in alkaliactivated granulated slag mortars with reactive aggregate. Cement and Concrete Research, 32(7), pp.1019-1024. https://doi.org/10.1016/S0008-8846(01)00745-1
  37. Shi, C., Roy, D., and Krivenko, P., 2006 : Alkali-activated cements and concretes, Chapter 3, pp.29-63.
  38. Garcia-Lodeiro, I. et al., 2011 : Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram $Na_2O-CaO-Al_2O_3-SiO_2-H_2O$, Cement and Concrete Reserch, 41, pp.923-931. https://doi.org/10.1016/j.cemconres.2011.05.006