DOI QR코드

DOI QR Code

Preparation of Nanosized Palladium Oxide Powder with Average Particle Size Below 30 nm by Spray Pyrolysis Process

평균입도 30 nm 이하의 산화 팔라듐(PdO) 분체의 분무열분해공정에 의한 제조기술 개발

  • Received : 2018.01.03
  • Accepted : 2018.02.16
  • Published : 2018.04.30

Abstract

This study was conducted as a preliminary study for the recycling of palladium and palladium oxide. In this study, thermodynamic equations for the formation of palladium oxide (PdO) are established. Palladium chloride is dissolved into hydrochloric acid to generate a palladium chloride solution. Nanosized palladium oxide powder with an average particle size below 30 nm were generated from this raw material solution by means of a spray pyrolysis process. The palladium oxide particles were composed of a single solid crystal. The results of XRD analysis showed that only a PdO phase of the generated powder was formed. And, the specific surface area of the generated palladium powder was approximately $32m^2/g$.

본 연구는 금속 팔라듐 및 산화 팔라듐의 재활용을 위한 전 단계 연구로 수행되었다. 본 연구에서는 산화 팔라듐(PdO)의 형성을 위한 열역학적 수식들을 확립하였다. 또한 고상의 염화 팔라듐($PdCl_2$)을 염산 용액에 용해시킨 염화 팔라듐 용액을 원료용액으로 사용하였다. 이 원료 용액으로부터 분무열분해 공정에 의하여 평균입도 30 nm 이하의 산화 팔라듐 분체를 제조하였다. XRD 분석 결과 생성된 분체는 오직 PdO 상이었으며 TEM 분석결과 형성된 나노 PdO 입자들은 단결정 상임을 확인하였다. 또한 생성된 PdO 분말의 비표면적은 약 $32m^2/g$이었다.

Keywords

References

  1. D. H. Kim and J. K. Yu, 2017 : Effect of Inflow Rate of Raw Material Solution on the Fabrication of Nano-Sized Cobalt Oxide Powder by Spray Pyrolysis Process, Kor. J. Mater. Res., 26, pp.662-669.
  2. J. K. Yu and D. H. Kim, 2013 : The Preparation of Nano Size Nickel Oxide Powder by Spray Pyrolysis, Powder Technology, 235, pp.1030-1037. https://doi.org/10.1016/j.powtec.2012.11.031
  3. J. K. Yu and D. H. Kim, 2017 : Effect of Nozzle Tip Size on the Preparation of Nano-Sized Cobalt Oxide Powder by Spray Pyrolysis Process, J. of Korean Inst. of Resources Recycling, 12, pp.1545-1550.
  4. J. K. Yu and D. H. Kim, 2009 : Influences of Reaction Factors on the Nano-Sized Tin Oxide Powder by Spray Pyrolysis Process, Journal of the Ceramic Society of Japan, 117, pp.1078-1084. https://doi.org/10.2109/jcersj2.117.1078
  5. J. K. Yu et al., 2007 : Fabrication of Nano-Sized ITO Powder from Waste ITO Target by Spray Pyrolysis Process, Materials Transactions, 48, pp.249-257. https://doi.org/10.2320/matertrans.48.249
  6. J. K. Yu et al., 2006 : Nano-Sized Indium Oxide Powder Synthesized by Spray Pyrolysis Process, Materials Transactions, 47, pp.1838-1846. https://doi.org/10.2320/matertrans.47.1838
  7. D. Majumdar, T. A. Shefelbine and T. T. Kodas, 1996 : Copper(1) Oxide Powder Generation by Spray Pyrolysis, J. Mater. Res., 11, pp.2861-2868. https://doi.org/10.1557/JMR.1996.0361
  8. T. C. Pluym and T. T. Kodas, 1995 : Silver-Palladium Alloy particle Production by Spray Pyrolysis, J. Mater. Res., 10, pp.1661-1673. https://doi.org/10.1557/JMR.1995.1661
  9. G. L. Messing, S. C. Zhang, and G. V. Jayanthi, 1993 : Ceramic Powder Sythesis by Spray Pyrolysis, J. Am. Ceram. Soc., 76, pp.2707-2726. https://doi.org/10.1111/j.1151-2916.1993.tb04007.x
  10. I. Barin, 1989 : Thermochemical Data of Pure Substances, VCH, Germany, pp.1392-1404.
  11. O. Kubachewski and C. B. Alcock, 1979 : Metallurgical Thermochemistry 5, Pergamon Press, pp.379-380.