DOI QR코드

DOI QR Code

Preparation of Nano Sized Indium Tin Oxide (ITO) Powder with Average Particle Size Below 30 nm from Waste ITO Target by Spray Pyrolysis Process

폐 ITO 타겟으로부터 분무열분해 공정에 의한 평균입도 30 nm 이하의 인듐-주석 산화물 분체 제조

  • Received : 2018.01.03
  • Accepted : 2018.02.16
  • Published : 2018.04.30

Abstract

In this study, waste ITO target is dissolved into hydrochloric acid to generate a complex indium-tin chloride solution. Nano sized ITO powder with an average particle size below 30 nm are generated from these raw material solutions by spray pyrolysis process. Also, in this study, thermodynamic equations for the formation of indium-tin oxide (ITO) are established. As the reaction temperature increased from $800^{\circ}C$ to $900^{\circ}C$, the proportion and size of the spherical droplet shape in which nano sized particles aggregated gradually decreased, and the surface structure gradually became densified. When the reaction temperature was $800^{\circ}C$, the average particle size of the generated powder was about 20 nm, and no significant sintering was observed. At a reaction temperature of $900^{\circ}C$, the split of the droplet was more severe than at $800^{\circ}C$, and the rate of maintenance of the initial atomized droplet shape decreased sharply. The average particle size of the powder formed was about 25 nm. The ITO particles were composed of single solid crystals, regardless of reaction temperature. XRD analysis showed that only the ITO phase was formed. Remarkably, the specific surface area decreased by about 30% as the reaction temperature increased from $800^{\circ}C$ to $900^{\circ}C$.

본 연구에서는 폐 ITO 타겟을 염산에 용해시킴으로써 인듐-주석 복합 산 용액을 제조하여 원료용액으로 사용하였다. 이 원료용액으로부터 분무열분해 공정에 의하여 평균입도 30 nm 이하의 ITO 분체를 제조하였다. 또한 본 연구에서는 인듐-주석 산화물(ITO) 형성을 위한 열역학적 수식들을 확립하였다. 반응온도가 $800^{\circ}C$로부터 $900^{\circ}C$로 증가됨에 따라 평균입도 30 nm 이하인 나노입자들이 응집되어 있는 액적 형태의 비율 및 크기는 감소하는 반면 표면 조직은 더욱 치밀해짐을 알 수 있었다. 반응온도가 $800^{\circ}C$인 경우에는 생성된 분체의 평균입도는 약 20 nm이었으며, 현저한 소결 현상은 나타나지 않았다. 한편, 반응온도가 $900^{\circ}C$인 경우에는 노즐에 의하여 미립화되는 액적의 분열 현상은 $800^{\circ}C$의 경우보다 심하게 나타났으며 액적 형태의 비율은 현저하게 감소하였다. 형성된 입자들의 평균 입도는 약 25 nm로서 $800^{\circ}C$의 경우보다 약간 증가하였다. 반응온도에 관계없이 ITO 입자들은 단결정으로 구성되어 있었다. XRD 분석 결과 분무열분해 공정에 의하여 염화물 상은 전혀 존재하지 않았으며 오직 ITO 상만이 형성되었음을 알 수 있었다. 반응온도가 $800^{\circ}C$로부터 $900^{\circ}C$로 증가함에 따라 비표면적은 약 30% 감소하였다.

Keywords

References

  1. D. H. Kim and J. K. Yu, 2017 : Effect of Inflow Rate of Raw Material Solution on the Fabrication of Nano-Sized Cobalt Oxide Powder by Spray Pyrolysis Process, Kor. J. Mater. Res., 26, pp.662-669.
  2. J. K. Yu and D. H. Kim, 2013 : The Preparation of Nano Size Nickel Oxide Powder by Spray Pyrolysis, Powder Technology, 235, pp.1030-1037. https://doi.org/10.1016/j.powtec.2012.11.031
  3. J. K. Yu and D. H. Kim, 2017 : Effect of ambient Air Pressure on the Preparation of Cobalt Oxide Powder with Average Particle Size below 50 nm by Spray Pyrolysis Process, J. of Korean Inst. of Resources Recycling, 12, pp.1545-1550.
  4. J. K. Yu and D. H. Kim, 2009 : Influences of Reaction Factors on the Nano-Sized Tin Oxide Powder by Spray Pyrolysis Process, Journal of the Ceramic Society of Japan, 117, pp.1078-1084. https://doi.org/10.2109/jcersj2.117.1078
  5. J. K. Yu et al., 2007 : Fabrication of Nano-Sized ITO Powder from Waste ITO Target by Spray Pyrolysis Pro- cess, Materials Transactions, 48, pp.249-257. https://doi.org/10.2320/matertrans.48.249
  6. J. K. Yu et al., 2006 : Nano-Sized Indium Oxide Powder Synthesized by Spray Pyrolysis Process, Materials Transactions, 47, pp.1838-1846. https://doi.org/10.2320/matertrans.47.1838
  7. D. Majumdar, T. A. Shefelbine and T. T. Kodas, 1996 : Copper(1) Oxide Powder Generation by Spray Pyrolysis, J. Mater. Res., 11, pp.2861-2868. https://doi.org/10.1557/JMR.1996.0361
  8. T. C. Pluym and T. T. Kodas, 1995 : Silver-Palladium Alloy particle Production by Spray Pyrolysis, J. Mater. Res., 10, pp.1661-1673. https://doi.org/10.1557/JMR.1995.1661
  9. G. L. Messing, S. C. Zhang and G. V. Jayanthi, 1993 : Ceramic Powder Sythesis by Spray Pyrolysis, J. Am. Ceram. Soc., 76, pp.2707-2726. https://doi.org/10.1111/j.1151-2916.1993.tb04007.x
  10. I. Barin, 1989 : Thermochemical Data of Pure Substances, VCH, Germany, pp.1392-1404.
  11. O. Kubachewski and C.B. Alcock, 1979 : Metallurgical Thermochemistry 5, Pergamon Press, pp.379-380.
  12. J. K. Yu and D. H. Kim, 2011 : Preparation of Nano- Sized Tin Oxide Powder from Tin Chloride Solution by Spray Pyrolysis, Kor. J. Mater. Res., 21, pp.690-696. https://doi.org/10.3740/MRSK.2011.21.12.690