DOI QR코드

DOI QR Code

메탄의 완전산화 반응을 위한 중공사형 페롭스카이트 촉매 제조

Preparation of the Hollow Fiber Type Perovskite Catalyst for Methane Complete Oxidation

  • 이성운 (동국대학교 화공생물공학과) ;
  • 김은주 (고등기술연구원) ;
  • 이홍주 (동국대학교 화공생물공학과) ;
  • 박정훈 (동국대학교 화공생물공학과)
  • Lee, Seong Woon (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Kim, Eun Ju (Institute for Advanced Engineering) ;
  • Lee, Hong Joo (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Park, Jung Hoon (Department of Chemical and Biochemical Engineering, Dongguk University)
  • 투고 : 2017.11.15
  • 심사 : 2018.01.22
  • 발행 : 2018.06.01

초록

선행 연구를 통해서 우수한 메탄 완전 산화 특성을 보인 $La_{0.1}Sr_{0.9}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ (LSCF1928) 페롭스카이트 분말 촉매로 비드형과 중공사형 촉매를 제조하였다. 중공사형 촉매는 내부가 비어있는 원기둥 형태이며, 상전이법을 통해 기공을 형성시킬 수 있어 비표면적을 획기적으로 향상시킬 수 있다. Methyl Cellulose (MC)를 넣어 제조한 비드형 촉매의 경우 MC에서 배출되는 $CO_2$와 촉매 성분인 Sr이 반응하여 원래 촉매 조성이었던 LSCF1928 조성 외에 $SrCO_3$가 생성되었다. 중공사형 촉매의 경우 불순물 없이 단일상의 페롭스카이트 구조를 얻었다. $700{\sim}900^{\circ}C$에서 하소한 중공사형 촉매는 손가락구조-스펀지구조-손가락구조의 기공 형태를 보였으며, 모두 $475^{\circ}C$에서 메탄의 완전 산화 반응을 통해 99.9% 산소 전화율을 달성하였다. 중공사형 촉매의 기공을 제어하기 위하여 에어 갭과 방사압력 조건을 변경하였다. 2 cm 에어 갭, 7 bar의 방사 압력으로 제조한 중공사형 촉매가 가장 우수한 촉매 성능을 보였으며, $425^{\circ}C$, $450^{\circ}C$$475^{\circ}C$에서 각각 70.65%, 93.01%, 99.99% 이상의 산소 전화율을 달성하였다.

Bead type and hollow fiber type catalyst (HFC, Hollow Fiber type Catalyst) was prepared by $La_{0.1}Sr_{0.9}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ (LSCF1928) perovskite powder catalyst which showed excellent methane complete oxidation characteristics through previous studies. The HFC have a cylindrical shape with an empty interior, and pores can be formed through Phase inversion method so the specific surface area can be remarkably improved. In the case of the bead type catalyst prepared by adding Methyl Cellulose (MC), $SrCO_3$ was produced in addition to the original catalyst composition of LSCF1928 due to the reaction of $CO_2$ emitted from MC and Sr of the catalyst. In the case of the HFC, a single phase perovskite structure was obtained without impurities. The HFC calcined at $700{\sim}900^{\circ}C$ showed pore structure of finger-sponge-finger structure, and 99.9% oxygen conversion rate was achieved through complete oxidation of methane at $475^{\circ}C$. Air gap and spinning pressure condition were changed to control the HFC pore. 2 cm air gap and 7 bar spinning pressure showed the best catalytic performance and achieved oxygen conversion rates of more than 70.65%, 93.01%, and 99.99% at $425^{\circ}C$, $450^{\circ}C$ and $475^{\circ}C$, respectively.

키워드

참고문헌

  1. Hansen, J. E. and Sir, J. H., "Global Warming: The Complete Briefing," J. Atmospheric Chem., 30(3), 409-412(1998). https://doi.org/10.1023/A:1006043116343
  2. Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. and Totterdell, I. J., "Acceleration of Global Warming Due to Carbon-cycle Feedbacks in a Coupled Climate Model," Nature, 408(6809), 184-187(2000). https://doi.org/10.1038/35041539
  3. Cong, L., Ying, Z., Yongqing, X., Haoran, D., Chuguang, Z., Changlei, Q. and Bo, F., "Cyclic $CO_2$ Capture Characteristics of a Pellet Derived from Sol-gel CaO Powder with $Ca1_2Al_{14}O_{33}$ Support," Korean J. Chem. Eng., 32(5), 934-938(2015). https://doi.org/10.1007/s11814-014-0291-0
  4. Yeon, S. H., Seo, B. K., Park, Y. I. and Lee, G. H., "Carbon Dioxide Recovery Using Membrane Contactor-Stripper Hybrid Process," Korean Chem. Eng. Res., 39(6), 709-714(2001).
  5. Hogan, K. B., Hoffman, J. S. and Thompson, A. M., "Methane on the Greenhouse Agenda," Nature, 354, 181-182(1991). https://doi.org/10.1038/354181a0
  6. Lantela, J., Rasi, S., Lehtinen, J. and Rintala, J., "Landfill Gas Upgrading with Pilot-scale Water Scrubber: Performance Assessment with Absorption Water Recycling," Applied Energy, 92, 307-314 (2012). https://doi.org/10.1016/j.apenergy.2011.10.011
  7. Bandyopadhyay, A., "Amine Versus Ammonia Absorption of $CO_2$ as a Measure of Reducing GHG Emission: a Critical Analysis," Clean Tec. Env. Policy, 13(2), 269-294(2011). https://doi.org/10.1007/s10098-010-0299-z
  8. Fang, J. J., Yang, N., Cen, D. Y., Shao, L. M. and He, P. J., "Odor Compounds from Different Sources of Landfill: Characterization and Source Identification," Waste Management, 32(7), 1401-1410 (2012). https://doi.org/10.1016/j.wasman.2012.02.013
  9. El-Fadel, M., Findikakis, A. N. and Leckie, J., "O'Environmental Impacts of Solid Waste Landfilling," J. Env. management, 50(1), 1-25(1997). https://doi.org/10.1006/jema.1995.0131
  10. Ryckebosch, E., Drouillon, M., and Vervaeren, H., "Techniques for Transformation of Biogas to Biomethane," Biomass and Bioenergy, 35(5), 1633-1645(2011). https://doi.org/10.1016/j.biombioe.2011.02.033
  11. Tanaka, H., Kaino, R., Okumura, K., Kizuka, T., Nakagawa, Y. and Tomishige, K., "Comparative Study of Rh/MgO Modified with Fe, Co or Ni for the Catalytic Partial Oxidation of Methane at Short Contact Time. Part I: Characterization of Catalysts," Applied Catalysis A: General, 378(2), 175-186(2010). https://doi.org/10.1016/j.apcata.2010.02.017
  12. Marchetti, L. and Forni, L., "Catalytic Combustion of Methane over Perovskites," Applied Catalysis B: Env., 15(3), 179-187(1998). https://doi.org/10.1016/S0926-3373(97)00045-3
  13. Kim, J. R., Kim, E. J., Edoardo, M. and Park, J. H., "Catalytic Deoxygen Reaction of Landfill Gas (LFG) at Intermediate Tem- perature: The Case Study of Perovskite-type $La_{0.1}Sr_{0.9}Co_{0.2}Fe_{0.8}O_{3-d}$ Catalysts (LSCF)," J. Ind. Eng. Chem., 47, 214-220(2017). https://doi.org/10.1016/j.jiec.2016.11.034

피인용 문헌

  1. CH4/CO2 separation from biogas stream using porous hydrophobic ceramic hollow fiber membrane contactors vol.37, pp.6, 2018, https://doi.org/10.1007/s11814-020-0510-9