DOI QR코드

DOI QR Code

Fabrication of Superhydrophobic molecules Nanoarray by Dip-pen Nanolithography

나노리소그라피 기술을 이용한 초소수성 불소 실란 분자의 나노패턴 제조

  • Yeon, Kyung-Heum (Department Department of Polymer Science and Engineering, Korea National University of Transportation) ;
  • Kang, Pil-Seon (Department Department of Polymer Science and Engineering, Korea National University of Transportation) ;
  • Kim, Kyung-Min (Department Department of Polymer Science and Engineering, Korea National University of Transportation) ;
  • Lim, Jun-Hyurk (Department Department of Polymer Science and Engineering, Korea National University of Transportation)
  • 연경흠 (한국교통대학교 나노고분자공학과) ;
  • 강필선 (한국교통대학교 나노고분자공학과) ;
  • 김경민 (한국교통대학교 나노고분자공학과) ;
  • 임정혁 (한국교통대학교 나노고분자공학과)
  • Received : 2018.12.05
  • Accepted : 2018.12.25
  • Published : 2018.12.30

Abstract

Dip-pen nanolithography(DPN) is an atomic force microscope (AFM) based method of generating nano- or micro-patterns. This technique has been used to transfer various ink materials on the substrate through water meniscus formed between AFM tip and the substrate surface. In this study, the heptadecafluoro-1,1,2,2-tetrahydrodecyltrimethoxysilane (HDFDTMS) ink materials were coated on the pre-coated AFM tip surface with the HDFDTMS molecules. When the tip brought into contact with the hydroxyl-functionalized silicon surface, HDFDTMS ink molecules have been successfully transported from the tip onto the surface via water meniscus. The created array and passivation area showed stable structures on the surface, and the transport of ink materials from the AFM tip to the surface followed linear increase in pattern size with contact time.

이 딥펜 나노리소그라피(DPN)는 원자 힘 현미경(AFM)을 기반으로 하는 나노 및 마이크로 패턴 제조 기술이다. 다양한 잉크 물질을 AFM 탐침에 코팅하여 탐침과 기판 사이에 형성된 물 메니스커스를 통해 기판으로 전이시켜 패턴을 제조한다. 본 연구에서는, 실란 전처리된 AFM 탐침 표면에 불소 실란 잉크 용액을 코팅하고 하이드록시기로 개질된 실리콘 기판 위에 접촉시킨 후, DPN 기술을 이용하여 표면으로 잉크 물질을 전이시키는 연구를 진행하였다. HDFDTMS 잉크 물질의 dot 어레이 패턴을 안정적으로 제조하였으며, AFM 탐침과 기판 사이의 접촉시간에 따라 패턴 크기가 선형적으로 증가하는 전형적인 DPN의 확산 메커니즘을 보였다.

Keywords

JGMHB1_2018_v19n4_163_f0001.png 이미지

Figure 1. Schematic representation of the stepwise process for (a) AFM tip modification and (b) DPN patterning

JGMHB1_2018_v19n4_163_f0002.png 이미지

Figure 2. SEM images of (a) bare and (b) HDFDTMS-coated tip.

JGMHB1_2018_v19n4_163_f0003.png 이미지

Figure 3. (a) AFM topography image of HDFDTMS array depending on contact times. (b) The line plot taken through pattern of (a). (c) The plot of dot diameter vs square root of contact time.

JGMHB1_2018_v19n4_163_f0004.png 이미지

Figure 4. (a) AFM topography image of HDFDTMS dots array. (b) The cross-sectional height profile of the line in (a). (c) 3-dimensional image of (a).

References

  1. R. D. Piner, J. Zhu, F. Xu, S. Hong, C. A. Mirkin, Science, 283, 661, (1999). https://doi.org/10.1126/science.283.5402.661
  2. L. Fu, X. Liu, Y. Zhang, V. P. Dravid, C. A. Mirkin, Nano Lett., 3, 757, (2003). https://doi.org/10.1021/nl034172g
  3. J. Jang, S. Hong, G. C. Schatz, M. A. Ratner, J. Chem. Phys., 115, 2721, (2001). https://doi.org/10.1063/1.1384550
  4. H. G. Jung, C. K. Dalal, S. Kuntz, R. Shah, C. P. Collier, Nano Lett., 4, 2171, (2004). https://doi.org/10.1021/nl048705c
  5. J. H. Lim, D. S. Ginger, K. B. Lee, J. S. Heo, J.M. Nam, C. A. Mirkin, Angew. Chem. Int. Ed., 42, 2309, (2003). https://doi.org/10.1002/anie.200351256
  6. D. S. Choi, S. H. Yun, Y. C. An, M. J. Lee, D. G. Kang, S. I. Chang, H. K. Kim, K. M. Kim, J. H. Lim, Biochip Journal, 1, 200, (2007).
  7. Y. H. Shin, S. H. Yun, S. H. Pyo, Y. S. Lim, H. J. Yoon, K. H. Kim, S. K. Moon, S. W. Lee, Y. G. Park, S. I. Chang, K. M. Kim, J. H. Lim, Angew. Chem., 122, 9883, (2010). https://doi.org/10.1002/ange.201004654
  8. E. J. Peterson, B. L. Weeks, J. J. De Yoreo, P. V. Schwartz, J. Phys. Chem., 108, 15206, (2004). https://doi.org/10.1021/jp048177t
  9. M. Hirtz, A. Oikonomou, T. Georgiou, H. Fuchs, A. Vijayaraghavan, Nature Communications, 4, 2591 (2013) https://doi.org/10.1038/ncomms3591
  10. W. M. Wang, R. M. Stoltenberg, S. Liu, Z. Bao, ACS Nano., 2, 2135, (2008). https://doi.org/10.1021/nn8005416
  11. J. E. Kim, Y. H. Shin, S. H. Yun, D. S. Choi, J. H. Nam, S. R. Kim, S. K. Moon, B. H. Chung, J. H. Lee, J. H. Kim, K. Y. Kim, K. M. Kim, J. H. Lim, J. Am. Chem. Soc., 134, 16500, (2012). https://doi.org/10.1021/ja3073808
  12. C. C. Wu, H. Xu, C. Otto, D. N. Reinhoudt, R. G. H. Lammertink, J. Huskens, V. Subramaniam, A. H. Velders, J. Am. Chem. Soc., 131, 7526, (2009) https://doi.org/10.1021/ja901756a
  13. K. Salaita, Y. H. Wang, C. A. Mirkin, Nature Nanotechnology, 2, 145, (2007). https://doi.org/10.1038/nnano.2007.39
  14. Y. J. Ji, Y. J. Shin. Y. R. Shin, J. Y. Kim, Y. S. Yoon, J. S. Shin, Journal of Adhesion and Interface, 7, 10, (2006).
  15. J. A. Howarter, J. P. Youngblood, Macromolecules, 40, 1128, (2007). https://doi.org/10.1021/ma062028m
  16. B. Bhushan, D. Hansford, K. K. Lee, J. Vac. Sci. Technol., 24, 1197, (2006)
  17. Y. Wang, B. Bhushan, ACS Appl. Mater. Interfaces, 7, 743, (2015). https://doi.org/10.1021/am5067755
  18. A. Hernandez-Santana, E. Irvine, K. Faulds, D. Graham, Chem. Sci., 2, 211, (2011) https://doi.org/10.1039/C0SC00420K
  19. A. Ivanisevic, C. A. Mirkin, J. Am. Chem. Soc., 123, 7887, (2001). https://doi.org/10.1021/ja010671c