References
- Tan P and Yeoh KG (2015) Genetics and Molecular Pathogenesis of Gastric Adenocarcinoma. Gastroenterology 149, 1153-1162 e1153 https://doi.org/10.1053/j.gastro.2015.05.059
- Tan IB, Ivanova T, Lim KH et al (2011) Intrinsic subtypes of gastric cancer, based on gene expression pattern, predict survival and respond differently to chemotherapy. Gastroenterology 141, 476-485, 485.e471-411 https://doi.org/10.1053/j.gastro.2011.04.042
- Corso S and Giordano S (2016) How Can Gastric Cancer Molecular Profiling Guide Future Therapies? Trends Mol Med 22, 534-544 https://doi.org/10.1016/j.molmed.2016.05.004
- Bang Y-J, Van Cutsem E, Feyereislova A et al (2010) Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. The Lancet 376, 687-697 https://doi.org/10.1016/S0140-6736(10)61121-X
- Sartore-Bianchi A, Trusolino L, Martino C et al (2016) Dual-targeted therapy with trastuzumab and lapatinib in treatment-refractory, KRAS codon 12/13 wild-type, HER2-positive metastatic colorectal cancer (HERACLES): a proof-of-concept, multicentre, open-label, phase 2 trial. Lancet Oncol 17, 738-746 https://doi.org/10.1016/S1470-2045(16)00150-9
- Wilke H, Muro K, Van Cutsem E et al (2014) Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastrooesophageal junction adenocarcinoma (RAINBOW): a double-blind, randomised phase 3 trial. Lancet Oncol 15, 1224-1235 https://doi.org/10.1016/S1470-2045(14)70420-6
- Kahn M (2014) Can we safely target the WNT pathway? Nat Rev Drug Discov 13, 513-532 https://doi.org/10.1038/nrd4233
- Lu D, Li Y, Liu QR et al (2015) Wls promotes the proliferation of breast cancer cells via Wnt signaling. Med Oncol 32, 140 https://doi.org/10.1007/s12032-015-0585-z
- Mao J, Fan S, Ma W et al (2014) Roles of Wnt/betacatenin signaling in the gastric cancer stem cells proliferation and salinomycin treatment. Cell Death Dis 5, e1039 https://doi.org/10.1038/cddis.2013.515
- Clevers H and Nusse R (2012) Wnt/beta-catenin signaling and disease. Cell 149, 1192-1205 https://doi.org/10.1016/j.cell.2012.05.012
- Anastas JN and Moon RT (2013) WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer 13, 11-26 https://doi.org/10.1038/nrc3419
- Proffitt KD and Virshup DM (2012) Precise regulation of porcupine activity is required for physiological Wnt signaling. J Biol Chem 287, 34167-34178 https://doi.org/10.1074/jbc.M112.381970
- Voloshanenko O, Erdmann G, Dubash TD et al (2013) Wnt secretion is required to maintain high levels of Wnt activity in colon cancer cells. Nat Commun 4, 2610 https://doi.org/10.1038/ncomms3610
- Banziger C, Soldini D, Schutt C, Zipperlen P, Hausmann G and Basler K (2006) Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell 125, 509-522 https://doi.org/10.1016/j.cell.2006.02.049
- Bartscherer K, Pelte N, Ingelfinger D and Boutros M (2006) Secretion of Wnt ligands requires Evi, a conserved transmembrane protein. Cell 125, 523-533 https://doi.org/10.1016/j.cell.2006.04.009
- Yu J, Chia J, Canning CA, Jones CM, Bard FA and Virshup DM (2014) WLS retrograde transport to the endoplasmic reticulum during Wnt secretion. Dev Cell 29, 277-291 https://doi.org/10.1016/j.devcel.2014.03.016
- Maruyama EO, Yu HM, Jiang M, Fu J and Hsu W (2013) Gpr177 deficiency impairs mammary development and prohibits Wnt-induced tumorigenesis. PLoS One 8, e56644 https://doi.org/10.1371/journal.pone.0056644
- Augustin I, Goidts V, Bongers A et al (2012) The Wnt secretion protein Evi/Gpr177 promotes glioma tumourigenesis. EMBO Mol Med 4, 38-51 https://doi.org/10.1002/emmm.201100186
- Barrott J, Cash GM, Smith AP, Barrow JR and Murtaugh LC (2011) Deletion of mouse Porcn blocks Wnt ligand secretion and reveals an ectodermal etiology of human focal dermal hypoplasia/Goltz syndrome. Proc Natl Acad Sci U S A 108, 12752-12757 https://doi.org/10.1073/pnas.1006437108
- Liu J, Pan S, Hsieh MH et al (2013) Targeting Wnt-driven cancer through the inhibition of Porcupine by LGK974. Proc Natl Acad Sci U S A 110, 20224-20229 https://doi.org/10.1073/pnas.1314239110
- Minn YK, Lee DH, Hyung WJ et al (2014) MicroRNA-200 family members and ZEB2 are associated with brain metastasis in gastric adenocarcinoma. Int J Oncol 45, 2403-2410 https://doi.org/10.3892/ijo.2014.2680
- Lee E, Yang J, Ku M et al (2015) Metabolic stress induces a Wnt-dependent cancer stem cell-like state transition. Cell Death Dis 6, e1805 https://doi.org/10.1038/cddis.2015.171
- Choi YY, Lee JE, Kim H et al (2016) Establishment and characterisation of patient-derived xenografts as paraclinical models for gastric cancer. Sci Rep 6, 22172 https://doi.org/10.1038/srep22172
- Kim W, Kim M and Jho EH (2013) Wnt/beta-catenin signalling: from plasma membrane to nucleus. Biochem J 450, 9-21 https://doi.org/10.1042/BJ20121284
- Fu J, Ivy Yu HM, Maruyama T, Mirando AJ and Hsu W (2011) Gpr177/mouse Wntless is essential for Wnt-mediated craniofacial and brain development. Dev Dyn 240, 365-371 https://doi.org/10.1002/dvdy.22541
- Jin J, Morse M, Frey C, Petko J and Levenson R (2010) Expression of GPR177 (Wntless/Evi/Sprinter), a highly conserved Wnt-transport protein, in rat tissues, zebrafish embryos, and cultured human cells. Dev Dyn 239, 2426-2434 https://doi.org/10.1002/dvdy.22369
- Yu HM, Jin Y, Fu J and Hsu W (2010) Expression of Gpr177, a Wnt trafficking regulator, in mouse embryogenesis. Dev Dyn 239, 2102-2109 https://doi.org/10.1002/dvdy.22336
- Carpenter AC, Smith AN, Wagner H et al (2015) Wnt ligands from the embryonic surface ectoderm regulate 'bimetallic strip' optic cup morphogenesis in mouse. Development 142, 972-982 https://doi.org/10.1242/dev.120022
- Jiang M, Ku WY, Fu J, Offermanns S, Hsu W and Que J (2013) Gpr177 regulates pulmonary vasculature development. Development 140, 3589-3594 https://doi.org/10.1242/dev.095471
- Park SY, Seo J, Choi HK et al (2017) Protein serine/threonine phosphatase PPEF-1 suppresses genotoxic stress response via dephosphorylation of PDCD5. Sci Rep 7, 39222 https://doi.org/10.1038/srep39222