References
- Lass A, Zimmermann R, Oberer M and Zechner R (2011) Lipolysis-a highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores. Prog Lipid Res 50, 14-27 https://doi.org/10.1016/j.plipres.2010.10.004
- Klebanov S, Astle CM, DeSimone O, Ablamunits V and Harrison DE (2005) Adipose tissue transplantation protects ob/ob mice from obesity, normalizes insulin sensitivity and restores fertility. J Endocrinol 186, 203-211 https://doi.org/10.1677/joe.1.06150
- Greenberg AS, Shen WJ, Muliro K et al (2001) Stimulation of lipolysis and hormone-sensitive lipase via the extracellular signal-regulated kinase pathway. J Biol Chem 276, 45456-45461 https://doi.org/10.1074/jbc.M104436200
- Fruhbeck G, Mendez-Gimenez L, Fernandez-Formoso JA, Fernandez S and Rodriguez A (2014) Regulation of adipocyte lipolysis. Nutr Res Rev 27, 63-93 https://doi.org/10.1017/S095442241400002X
- Cannon B and Nedergaard JAN (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84, 277-359 https://doi.org/10.1152/physrev.00015.2003
- Nedergaard J, Bengtsson T and Cannon B (2007) Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Metab 293, E444-E452
- Locke RM, Rial E, Scott ID and Nicholls DG (1982) Fatty acids as acute regulators of the proton conductance of hamster brown-fat mitochondria. FEBS J 129, 373-380
- Bukowiecki LJ, Follea N, Lupien J and Paradis A (1981) Metabolic relationships between lipolysis and respiration in rat brown adipocytes. The role of long chain fatty acids as regulators of mitochondrial respiration and feedback inhibitors of lipolysis. J Biol Chem 256, 12840-12848
- Bartelt A, Bruns OT, Reimer R et al (2011) Brown adipose tissue activity controls triglyceride clearance. Nat Med 17, 200-205 https://doi.org/10.1038/nm.2297
- Chen W, Zhang Q, Cheng S, Huang J, Diao G and Han J (2017) Atgl gene deletion predisposes to proximal tubule damage by impairing the fatty acid metabolism. Biochem Biophys Res Commun 487, 160-166 https://doi.org/10.1016/j.bbrc.2017.03.170
- Ogasawara J, Nomura S, Rahman N et al (2010) Hormone-sensitive lipase is critical mediators of acute exercise-induced regulation of lipolysis in rat adipocytes. Biochem Biophys Res Commun 400, 134-139 https://doi.org/10.1016/j.bbrc.2010.08.026
- Sztalryd C, Xu G, Dorward H et al (2003) Perilipin A is essential for the translocation of hormone-sensitive lipase during lipolytic activation. J Cell Biol 161, 1093-1103 https://doi.org/10.1083/jcb.200210169
- Fedoreyev SA, Pokushalova TV, Veselova MV et al (2000) Isoflavonoid production by callus cultures of Maackia amurensis. Fitoterapia 71, 365-372 https://doi.org/10.1016/S0367-326X(00)00129-5
- Dixit M, Raghuvanshi A, Gupta CP et al (2015) medicarpin, a natural pterocarpan, heals cortical Bone defect by activation of Notch and Wnt canonical signaling pathways. PLoS One 10, e0144541 https://doi.org/10.1371/journal.pone.0144541
- Gatouillat G, Magid AA, Bertin E et al (2015) Medicarpin and millepurpan, two flavonoids isolated from Medicago sativa, induce apoptosis and overcome multidrug resistance in leukemia P388 cells. Phytomedicine 22, 1186-1194 https://doi.org/10.1016/j.phymed.2015.09.005
- Tyagi AM, Gautam AK, Kumar A et al (2010) Medicarpin inhibits osteoclastogenesis and has nonestrogenic bone conserving effect in ovariectomized mice. Mol Cell Endocrinol 325, 101-109 https://doi.org/10.1016/j.mce.2010.05.016
- Seino S and Shibasaki T (2005) PKA-dependent and PKA-independent pathways for cAMP-regulated exocytosis. Physiol Rev 85, 1303-1342 https://doi.org/10.1152/physrev.00001.2005
- Fabrizi M, Marchetti V, Mavilio M et al (2014) IL-21 is a major negative regulator of IRF4-dependent lipolysis affecting Tregs in adipose tissue and systemic insulin sensitivity. Diabetes 63, 2086-2096 https://doi.org/10.2337/db13-0939
- Carmen G-Y and Victor SM (2006) Signalling mechanisms regulating lipolysis. Cell Signal 18, 401-408 https://doi.org/10.1016/j.cellsig.2005.08.009
- Xu C, He J, Jiang H et al (2009) Direct effect of glucocorticoids on lipolysis in adipocytes. Mol Endocrinol 23, 1161-1170 https://doi.org/10.1210/me.2008-0464
- Rosenwald M, Perdikari A, Weber E and Wolfrum C (2013) Phenotypic analysis of BAT versus WAT differentiation. Curr Protoc Mouse Biol 205-216
- Rosen ED and MacDougald OA (2006) Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 7, 885-896 https://doi.org/10.1038/nrm2066
- Imran KM, Rahman N, Yoon D, Jeon M, Lee BT and Kim YS (2017) Cryptotanshinone promotes commitment to the brown adipocyte lineage and mitochondrial biogenesis in C3H10T1/2 mesenchymal stem cells via AMPK and p38-MAPK signaling. Biochim Biophys Acta 1862, 1110-1120 https://doi.org/10.1016/j.bbalip.2017.08.001
- Rahman N, Jeon M and Kim YS (2016) Delphinidin, a major anthocyanin, inhibits 3T3-L1 pre-adipocyte differentiation through activation of Wnt/beta-catenin signaling. Biofactors 42, 49-59
-
Jeon M, Rahman N and Kim YS (2016) Wnt/
${\beta}$ -catenin signaling plays a distinct role in methyl gallate-mediated inhibition of adipogenesis. Biochem Biophys Res Commun 479, 22-27 https://doi.org/10.1016/j.bbrc.2016.08.178 - Imran KM, Yoon D and Kim YS (2017) A pivotal role of AMPK signaling in medicarpin-mediated formation of brown and beige adipocytes from C3H10T1/2 mesenchymal stem cells. BioFactors, 44, 168-179