DOI QR코드

DOI QR Code

Analysis of the Changesin PM2.5 Concentrations using WRF-CMAQ Modeling System: Focusing on the Fall in 2016 and 2017

WRF-CMAQ 모델링 시스템을 활용한 PM2.5 농도변동 원인 분석: 2016년과 2017년의 가을철을 중심으로

  • Nam, Ki-Pyo (Air Quality Forecasting Center, Climate and Air Quality Research Department, NIER) ;
  • Lim, Yong-Jae (Air Quality Forecasting Center, Climate and Air Quality Research Department, NIER) ;
  • Park, Ji-Hoon (Air Quality Research Division, Climate and Air Quality Research Department, NIER) ;
  • Kim, Deok-Rae (Environmental Satellite Center, Climate and Air Quality Research Department, NIER) ;
  • Lee, Jae-Bum (Air Quality Forecasting Center, Climate and Air Quality Research Department, NIER) ;
  • Kim, Sang-Min (Environmental Satellite Center, Climate and Air Quality Research Department, NIER) ;
  • Jung, Dong-Hee (Air Quality Research Division, Climate and Air Quality Research Department, NIER) ;
  • Choi, Ki-Chul (Air Quality Forecasting Center, Climate and Air Quality Research Department, NIER) ;
  • Park, Hyun-Ju (Air Quality Forecasting Center, Climate and Air Quality Research Department, NIER) ;
  • Lee, Han-Sol (Air Quality Forecasting Center, Climate and Air Quality Research Department, NIER) ;
  • Jang, Lim-Seok (Air Quality Forecasting Center, Climate and Air Quality Research Department, NIER) ;
  • Kim, Jeong-Soo (Air Quality Research Department, NIER)
  • 남기표 (국립환경과학원 기후대기연구부 대기질통합예보센터) ;
  • 임용재 (국립환경과학원 기후대기연구부 대기질통합예보센터) ;
  • 박지훈 (국립환경과학원 기후대기연구부 대기환경연구과) ;
  • 김덕래 (국립환경과학원 기후대기연구부 환경위성센터) ;
  • 이재범 (국립환경과학원 기후대기연구부 대기질통합예보센터) ;
  • 김상민 (국립환경과학원 기후대기연구부 환경위성센터) ;
  • 정동희 (국립환경과학원 기후대기연구부 대기환경연구과) ;
  • 최기철 (국립환경과학원 기후대기연구부 대기질통합예보센터) ;
  • 박현주 (국립환경과학원 기후대기연구부 대기질통합예보센터) ;
  • 이한솔 (국립환경과학원 기후대기연구부 대기질통합예보센터) ;
  • 장임석 (국립환경과학원 기후대기연구부 대기질통합예보센터) ;
  • 김정수 (국립환경과학원 기후대기연구부)
  • Received : 2018.03.22
  • Accepted : 2018.04.05
  • Published : 2018.04.30

Abstract

It was analyzed to identify the cause of $PM_{2.5}$ concentration changes for the fall in 2016 and 2017 in South Korea using ground measurement data such as meterological variables and $PM_{2.5}$, AOD from GOCI satellite, and WRF-CMAQ modeling system. The result of ground measurement data showed that the $PM_{2.5}$ concentrations for the fall in 2017 decreased by 12.3% ($3.0{\mu}g/m^3$) compared to that of 2016. The difference of $PM_{2.5}$ concentrations between 2016 and 2017 mainly occurred for 11 Oct. - 20 Oct. (CASE1) and 15 Nov. - 19 Nov. (CASE2) when weather conditions were difficult to long-range transport from foreign regions and favored atmospheric ventilation in 2017 compared to 2016. Simulated $PM_{2.5}$ concentrations in 2017 decreased by 64.0% ($23.1{\mu}g/m^3$) and 35.7% ($12.2{\mu}g/m^3$) during CASE1 and CASE2, respectively. These results corresponded to the changes in observed $PM_{2.5}$ concentrations such as 53.6% for CASE1 and 47.8% for CASE2. It is implied that the changes in weather conditions affected significantly the $PM_{2.5}$ concentrations for the fall between 2016 and 2017. The contributions to decreases in $PM_{2.5}$ concentrations was assessed as 52.8% by long-range transport from foreign regions and 47.2% by atmospheric ventilation effects in domestic regions during CASE1, whereas their decreases during CASE2 were affected by 66.4% from foreign regions and 33.6% in domestic regions.

본 연구에서는 지상 기상 및 $PM_{2.5}$ 농도, GOCI 위성의 AOD 등 다양한 관측 자료와 WRF-CMAQ 모델링을 통해 2016년과 2017년의 우리나라 가을철 $PM_{2.5}$ 농도변화 원인을 분석하였다. 지상에서 관측된 2017년 전국 평균 $PM_{2.5}$ 농도는 2016년에 비해 약 12.3% ($3.0{\mu}g/m^3$) 감소한 것으로 나타났다. 두 해간 $PM_{2.5}$ 농도 차이는 10월과 11월의 두 사례(사례1: 10월 11일~10월 20일, 사례2: 11월 15일~19일) 기간에 주로 발생하였으며, 2017년의 기상조건이 2016년에 비하여 국외로부터 대기오염물질의 장거리 수송이 어렵고, 국내의 대기환기 효과를 증가시키는 방향으로 변화한 것이 주요한 원인으로 분석되었다. WRF-CMAQ 모델링 시스템을 이용하여 기상조건 변화가 $PM_{2.5}$ 농도에 미치는 정량적인 영향을 평가한 결과, $PM_{2.5}$ 모의농도는 2016년 대비 2017년의 사례1 기간에는 64.0% ($23.1{\mu}g/m^3$) 감소, 사례2 기간에는 35.7% ($12.2{\mu}g/m^3$) 감소한 것으로 나타나, 관측 농도 기반 감소율인 53.6% (사례1)와 47.8% (사례2)에 상응하는 감소율을 보였다. 따라서 기상조건 변화가 우리나라 가을철 $PM_{2.5}$ 농도 변화에 큰 영향을 미치는 것으로 분석되었다. 기상조건 변화로 인한 우리나라 $PM_{2.5}$ 농도 감소에 미친 국내외 기여율은 사례1 기간에 국외로부터의 장거리 수송영향이 52.8% 그리고 대기환기 효과에 따른 국내영향이 47.2% 로 국내외 영향이 유사하게 나타나지만, 사례2 기간에는 국외영향이 66.4% 그리고 국내영향이 33.6%로서 국외영향의 감소효과가 더 크게 나타났다.

Keywords

References

  1. Benjey W, Houyoux M, Susick J. 2001. Implementation of the SMOKE emissions data processor and SMOKE tool input data processor in Models-3. U.S. EPA.
  2. Bernard SM, Samet JM, Grambsch A, Ebi KL, Romieu I. 2001. The potential impact of climate variability and change on air pollution health effects in the United States, Environmental Health Perspectives. 109(2): 199-209. https://doi.org/10.1289/ehp.01109199
  3. Byun DW, Ching S. 1999. Science Algorithms of the EPA Models-3 Community Multi-scale Air Quality(CMAQ) Modeling System. EPA Report. EPA/600/R-99/030, NERL, Research Triangle Park, NC.
  4. Carter W. 1999. Documentation of the SAPRC-99 Chemical Mechanism for VOC Reactivity Assessment. Report to California Air Resources Board.
  5. Chen F, Dudhia. 2001. Coupling an advanced land surface hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev. 129: 569-585. https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
  6. Choi JK, Heo JB, Ban SJ, Yi SM, Zoh KD. 2013. Source apportionment of $PM_{2.5}$ at the coastal area in Korea. Science of the Total Environment. 447: 370-380. https://doi.org/10.1016/j.scitotenv.2012.12.047
  7. Choi KC, Lim YJ, Lee YH, Lee JB, Woo JH, Kim ST, Nam KP, Myong JS, Kim TH, Jang LS. 2018. Performance evaluation of air quality forecasting system for $PM_{2.5}$ concentrations applied by predicted emission inventories over China and South Korea (accepted in 2018). [Korean Literature]
  8. Di Q, Wang Y, Zanobetti A, Wang Y, Koutrakis P, Choirat C, Dominici F, Schwartz J. 2017. Air Pollution and Mortality in the Medicare Population. The New England Journal of Medicine. 376(26): 2513-2522. https://doi.org/10.1056/NEJMoa1702747
  9. EMEP/MSC-W, 1999: Computing Source-Receptor Matrices with the EMEP Eulerian Acid Deposition Model.
  10. Fajersztajn L, Veras M, Barrozo LV, Saldiva P. 2013. Air Pollution: a potentially modifiable risk factor for lung cancer. Nat. Rev. Cancer. 13: 674-678. https://doi.org/10.1038/nrc3572
  11. Gong SY, Bae HJ, Yoon DO, Hong SP, Park HY. 2012. A study on the health impact and management policy of $PM_{2.5}$ in Korea. Korea Environment Institute.
  12. Gilliand AB., Hogrefe C, Pinder RW, Godowitch JM, Foley KL, Rao ST. 2008. Dynamic evaluation of regional air quality models: Assessing changes in O3 stemming from changes in emissions and meteorology. Atmospheric Environment. 42(20): 5110-5123. https://doi.org/10.1016/j.atmosenv.2008.02.018
  13. Guenther A, Hewitt CN, Erickson D, Fall R, Geron C, Graedel T, Harley P, Klinger L, Lerdau M, Mckay WA, Pierce T, Scholes B, Steinbrecher R, Tallamraju R, Taylor J, Zimmerman P. 1995. A global model of natural volatile organic compound emissions. J. Geophys. Res.. 100: 8873-8892. https://doi.org/10.1029/94JD02950
  14. Han JS, Kim YM, Ahn JY, Kong BJ, Choi JS, Lee SU, Lee SJ. 2006. Spatial distribution and variation of long-range transboundary air pollutants flux during 1997-2004. Atmosphere. 22(1): 99-106.
  15. Hong SY, Dudhia J, Chen SH. 2004. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Monthly Weather Review. 132(1): 103-120. https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2
  16. Hong SY, Noh Y, Dudhia J. 2006. A new vertical diffusion package with and explicit treatment of entrainment processes. Monthly weather review. 134(9): 2318-2341. https://doi.org/10.1175/MWR3199.1
  17. IARC. 2013. Outdoor air pollution a leading environmental cause of cancer deaths. International Agency for Research on Cancer. Lyon. France.
  18. IPCC. 2007. Working Group 1 Contribution to the IPCC's 4th Assessment Report.
  19. IPCC. 2013. Working Group 1 Contribution to the IPCC's 5th Assessment Report.
  20. Jeon W, Choi Y, Percell P, Souri AH, Song CK, Kim ST, Kim JH. 2016. Computaionally efficient air quality forecasting tool: implementation of STOPS v1.5 model into CMAQ v5.0.2 for a prediction of Asian dust, Geosci. Model Dev. 9: 3671-3684. https://doi.org/10.5194/gmd-9-3671-2016
  21. Jung J, Kim YJ, Lee KY, -Cayetano MG, Batmunkh T, Koo JH, Kim J. 2010. Spectral optical properties of long-range transport Asian dust and pollution aerosols over Northeast Asia in 2007 and 2008.
  22. Kim BU, Kim OG, Kim HC, Kim ST. 2016, Influence of fossil-fuel power plant emissions on the surface fine particulate matter in the Seoul Capital Area, South Korea. Journal of the Air and Waste Management Association. 66(9): 863-873. https://doi.org/10.1080/10962247.2016.1175392
  23. Kim HC, Kim EH, Bae CH, Cho JH, Kim BH, Kim ST. 2017. Regional contributions to particulate matter concentration in the Seoul metropolitan area, Seouth Korea: seasonal variation and sensitivity to meteorology and emission inventor., Atmospheric Chemistry and Physics. 17: 10315-10332. https://doi.org/10.5194/acp-17-10315-2017
  24. Kim CH, Park IS, Lee SJ, Kim JS, Hong YD, Han JS, Jin HA. 2005. Evaluation of the effect of traffic control program on the ambient air quality in Seoul metropolitan area using the lower level stability index of atmosphere. J. Korean Soc. Atmos. Environ.. 21(2): 243-28.
  25. LEE SM, Ho CH, Choi YS. 2011, High-$PM_{10}$ concentration episodes in Seoul, Korea: Background sources and related meteorological conditions. Atmospheric Environment. 45(39): 7240-7247. https://doi.org/10.1016/j.atmosenv.2011.08.071
  26. Li M, Zhang Q, Kurokawa J, Woo JH, He KB, Lu Z, Ohara T, Song Y, Streets DG, Carmichael GR, Cheng YF, Hong CP, Huo H, Jiang XJ, Kang SC, Liu F, Su H, Zheng B. 2015. MIX: a mosaic Asian anthropogenic emission inventory for the MICS-Asia and the HTAP projects. Atmos. Chem. Phys. Discuss. 15(23): 34-813.
  27. Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA. 1997. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research: Atmospheres. 102(D14): 16663-16682. https://doi.org/10.1029/97JD00237
  28. NCEP. 2000. NCEP FNL Operational Model Global Tropospheric Analysis, continuing from July, 1999. Research Data Archive at the National Center for Atmospheric Research. Computational and Information System Laboratory, https://doi.org/10.5065/ D6M043C6 (accessed on Jan. 03, 2018)
  29. Oh HR, Ho CH, Kim JW, Chen D, Lee SM, Choi, YS, Chang LS, Song CK. 2015. Long-range transport of air pollutants originating in China: A possible major couse of multi-day high TEX>$PM_{10}$ episodes during cold season in Seoul, Korea. Atmospheric Environment. 109: 23-30. https://doi.org/10.1016/j.atmosenv.2015.03.005
  30. Pope CA, Dockery DW. 2006. Health Effects of Fine Particulate Air Pollution: Lines that Connect, Journal of the Air & Waste Management Association. 56(6): 709-742. https://doi.org/10.1080/10473289.2006.10464485
  31. Pope CAI, Ezzati M, Dockery DW. 2009. Fine- particulate air pollution and life expectancy in the United States. New England Journal of Medicine. 360: 376-386. https://doi.org/10.1056/NEJMsa0805646
  32. Seinfeld JH, Pandis SN. 2006. Atmospheric chemistry and physics. Hoboken.
  33. Schwartz J, Dockery DW, Neas LM. 1996. Is daily mortality associated specifically with fine particles?. Journal of the Air & Waste Management Association. 46: 927-939. https://doi.org/10.1080/10473289.1996.10467528
  34. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang X, Wang W, Powers JG. 2008. A description of the advanced research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR. National Center for Atmospheric Research, Boulder, CO, 125.
  35. Tao WK, Simpson J, McCumber M. 1989. An ice-water saturation adjustment, Monthly Weather Review. 117(1): 231-235. https://doi.org/10.1175/1520-0493(1989)117<0231:AIWSA>2.0.CO;2
  36. Tewari M, Chen F, Wang W, Dudhia J, LeMone MA, Mitchell K, Ek M, Gayno G, Wegiel J, Cuenca RH. 2004. Implementation and verification of the unified NOAH land surface model in the WRF model. 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction. p. 11-15.
  37. WHO. 2013. Health Effects of Particulate Matter- Policy implications for countries in eastern Europe. Caucasus and central Asia. p. 6-7.
  38. Yasunari T, Taniguchi M, Niles D, Chen D. 2013. Asia: proving ground for global sustainability. Curr. Opin. Environ. Sustain. 5: 288-292. https://doi.org/10.1016/j.cosust.2013.08.002
  39. Zheng J, Zhang L, Che W, Zheng Z, Yin S. 2009. A highly resolved temporal and spatial air pollutant emission inventory for the Pearl River Delta region, China and its uncertainty assessment. Atmospheric Environment. 43(32): 5112-5122. https://doi.org/10.1016/j.atmosenv.2009.04.060
  40. Zhang W, Capps SL, Hu Y, Nenes A, Napelenok SL, Russell AG. 2012. Development of the high-order decoupled direct method in three dimensions for particulate matter: enabling advanced sensitivity analysis in air quality models. Geosci. Geoscientific Model Development. 5(2): 355-368. https://doi.org/10.5194/gmd-5-355-2012