Scheme 1. Chemical structure of FKM rubber
Scheme 2. Intermittent CSR jig
Figure 1. XPS spectra of FKM O-ring; (a) non-treated, (b) thermal aging treated (170℃, 24 days).
Figure 2. XPS spectra, C1s level of FKM O-ring; (a) non-treated, (b) thermal aging treated (170℃, 24 days).
Figure 3. XPS spectra, O1s level of FKM O-ring; (a) non-treated, (b) thermal aging treated (170℃, 24 days).
Figure 4. XPS spectra, F1s level of FKM O-ring; (a) non-treated, (b) thermal aging treated (170℃, 24 days).
Figure 5. DSC analysis result of FKM O-rings; (a) non-treated, (b) thermal aging treated (170℃, 24 days).
Figure 6. Load vs. displacement of FKM O-ring by intermittent CSR test method; (a) non-treated, (b) thermal aging treated (170℃, 24 days).
Figure 7. Strain/stress curve of FKM O-ring; (a) non-treated, (b) thermal aging treated (170℃, 24 days).
Table 1. The Formulation of FKM O-ring
Table 2. Atomic Concentration (%) of the Different Elements Consisting the FKM O-ring According to Thermal Aging at Atmosphere
References
- ISO 11346, "Rubber, vulcanized or thermoplastic - Estimation of life-time and maximum temperature of use" (2004).
- K. T. Gillen, Robert Bernstein, and M. Celina, "Non-Arrhenius behavior for oxidative degradation of chlorosulfonated polyethylene materials", Polymer Degradation and Stability, 87, 335 (2005). https://doi.org/10.1016/j.polymdegradstab.2004.09.004
- K. T. Gillen, M. Celina, and R. Bernstein, "Validation of improved methods for predicting long-term elastomeric seal lifetimes from compression stress-relaxation", Polymer Degradation and Stability, 82, 25 (2003). https://doi.org/10.1016/S0141-3910(03)00159-9
- M. Celina, K. T. Gillen, and R. A. Assink, "Accelerated aging and lifetime prediction: Review of non-Arrhenius behavior due to two competing processes", Polymer Degradation and Stability, 90, 395 (2005). https://doi.org/10.1016/j.polymdegradstab.2005.05.004
- J. Wise, K. T. Gillen, and R. L. Clough, "An ultrasensitive technique for testing the Arrhenius extrapolation assumption for thermally aged elastomers", Polymer Degradation and Stability, 49, 403 (1995). https://doi.org/10.1016/0141-3910(95)00137-B
- K. T. Gillen and M. Celina, "The wear-out approach for predicting the remaining lifetime of materials", Polymer Degradation and Stability, 71, 15 (2001).
- R. Bernstein and K. T. Gillen, "Predicting the lifetime of fluorosilicone O-rings", Polymer Degradation and Stability, 94, 2107 (2009). https://doi.org/10.1016/j.polymdegradstab.2009.10.005
- J. H. Lee and J. W. Bae, "Life-time prediction of a Chloroprene Rubber O-ring Using Intermittent CSR and Time-temperature Superposition Principle", Macromolecular Research, 19, 6 (2011).
- J. H. Lee and J. W. Bae, "Life-time prediction of a FKM Oring Using Intermittent Compression Stress Relaxation (CSR) and Time-temperature Superposition (TTS) Principle", Elast. Compos., 45, 4 (2010).
- ISO 3384, "Rubber, vulcanized or thermoplastic - Determination of stress relaxation in compression at ambient and elevated temperatures" (2005).
- R. P. Brown and F. N. B. Bennett, "Compression Stress Relaxation", Polymer Testing, 2, 125 (1981). https://doi.org/10.1016/0142-9418(81)90030-1
- P. Tuckner, "Compression, Compression stress relaxation test comparisons and development", SAE Technical report 2000-01-0752 (2001).
- P. Tuckner, "Compression stress relaxation testing - comparisons, methods, and correlations", SAE Technical report 2001-01-0742 (2001).
- S. Ronan, T. Alshuth, S. Jerrams, and N. Murphy, "Long-term stress relaxation prediction for elastomers using the time-temperature superposition method", Materials and Design, 28, 1513 (2007). https://doi.org/10.1016/j.matdes.2006.03.009
- M. Rjeb, A. Labzour, A. Rjeb, and S. Sayourl, "Contribution to the Study by X-ray Photoelectron Spectroscopy of the Natural Aging of the Polypropylene", M. J. Condensed Matter, 5, 168 (2004).