DOI QR코드

DOI QR Code

The Effect of Heat Treatment Condition on the Mechanical Properties of oxi-PAN Based Carbon Fiber

Oxi-PAN 섬유를 기반으로 제조한 탄소섬유의 탄화 조건에 따른 구조 및 물성의 변화

  • Choi, Kyeong Hun (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology) ;
  • Heo, So Jeong (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology) ;
  • Hwang, Sang-Ha (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology) ;
  • Bae, Soo Bin (Agency for Defense Development) ;
  • Lee, Hyung Ik (Agency for Defense Development) ;
  • Chae, Han Gi (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology)
  • Received : 2018.08.20
  • Accepted : 2018.12.07
  • Published : 2018.12.31

Abstract

In this study, carbon fibers were fabricated via carbonization of oxidized polyacrylonitrile (oxi-PAN) under different carbonization conditions. Carbonization of oxi-PAN fiber was performed under four different temperature (1300, 1400, 1500, $1600^{\circ}C$) with four different fiber tensions (14, 25, 35, 45 MPa). Effect of carbonization process on the structural development and mechanical properties of carbon fiber were characterized by single filament fiber tensile test and Raman spectroscopy. A clear correlation exists between the Raman spectrum and the tensile modulus of carbon fiber and effect of carbonization temperature on the tensile modulus showed increased tendency only at higher fiber tension (${\geq}25MPa$) while tensile strength showed decreased or random tendency. Therefore, it may be concluded that the optimization of carbonization temperature of oxi-PAN fiber also requires optimization of fiber tension.

본 연구에서는 oxi-PAN 섬유를 이용하여 각각의 온도와 각 온도에서의 섬유에 부가되는 장력을 조절하여 탄소섬유를 제조하고 단섬유 인장실험과 라만 분광분석을 수행하여 결과를 바탕으로 oxi-PAN 섬유의 탄화 조건에 따른 구조적 변화와 그에 따른 물성의 변화를 관찰하고자 하였다. 라만 분광분석을 통해 계산된 $I_D/I_G$ 측정값들은 탄소섬유의 탄성율과 동일한 변화양상을 보여주었으며 특히 탄화온도는 일반적으로 고온일수록 흑연구조가 발달하여 섬유의 탄성율이 증가하는 양상이 나타난다고 알려져 있으나 결과를 통해 분석한 바에 따르면 일정한 장력(${\geq}25MPa$) 이상에서만 그러한 결과가 관찰되는 것으로 나타났다. 이와는 대조적으로 인장강도의 경우 라만분광분석 결과와의 연관성을 찾을 수 없었으며 또한 부가되는 장력에 의해 증가혹은 감소하는 상반된 경향이 다양하게 나타나 특정 변수에 따른 영향을 판단하기 어려웠다. 따라서 본 연구의 결과를 통해 특히 고탄성율의 탄소섬유의 제조를 위한 oxi-PAN 섬유의 탄화 온도 최적화를 위해서는 최적의 섬유장력 조건 또한 중요하게 고려되어야 함을 알 수 있었다.

Keywords

BHJRB9_2018_v31n6_385_f0001.png 이미지

Fig. 2. A digital image of graphite platform and clamp used for applying tension to oxiPAN fiber during the carbonization

BHJRB9_2018_v31n6_385_f0002.png 이미지

Fig. 3. Tensile strength and modulus of fibers carbonized at (a-b) 1300oC and (c-d) 1400oC with various fiber tension

BHJRB9_2018_v31n6_385_f0003.png 이미지

Fig. 4. Raman spectrum of fiber carbonized at (a) 1300oC and (b) 1400oC with 14 MPa fiber tension. Five most representative peak components were used to analyze each spectrum

BHJRB9_2018_v31n6_385_f0004.png 이미지

Fig. 5. Raman spectra of fibers carbonized at (a) 1300oC and (b) 1400oC with various fiber tension

BHJRB9_2018_v31n6_385_f0005.png 이미지

Fig. 6. Overall change in tensile properties caused by carbonization temperature and fiber tension

BHJRB9_2018_v31n6_385_f0006.png 이미지

Fig. 1. (a) Digital image of OxiPAN tow and (b) SEM image of its fractured surface. (c) Raman spectrum of oxiPAN shows ID/IG of 1.52

Table 1. Carbonization temperatures and fiber tensions applied for carbonization of OxiPAN

BHJRB9_2018_v31n6_385_t0001.png 이미지

Table 2. Tensile properties of carbon fiber carbonized at various temperature with 14 MPa of fiber tension

BHJRB9_2018_v31n6_385_t0002.png 이미지

Table 3. Tensile properties of carbon fiber carbonized at various temperature with 25 MPa of fiber tension

BHJRB9_2018_v31n6_385_t0003.png 이미지

Table 4. Tensile properties of carbon fiber carbonized at various temperature with 35 and 45 MPa of fiber tensions

BHJRB9_2018_v31n6_385_t0004.png 이미지

Table 5. ID/IG of carbon fibers carbonized at 1300oC and 1400oC with various fiber tension

BHJRB9_2018_v31n6_385_t0005.png 이미지

References

  1. Chung, D.D.L., and Chung, D., Caron Fiber Composites, Elsevier, USA, 2012.
  2. Chawla, K.K., Composite Materials, Chapter 8 Carbon Fiber Composite, Springer Science & Business Media, LLC, USA, 1987.
  3. Rahman, M.S.A., Ismail, A.F., and Mustafa, A., "A Review of Heat Treatment on Polyacrylonitrile Fiber", Polymer Degradation and Stability, Vol. 92, No. 8, 2007, pp. 1421-1432. https://doi.org/10.1016/j.polymdegradstab.2007.03.023
  4. Fitzer, E., "PAN-based Carbon Fibers-Present State and Trend of the Technology from the Viewpoint of Possibilities and Limits to Influence and to Control the Fiber Properties by the Process Parameters", Carbon, Vol. 27, No. 5, 1989, pp. 621-645. https://doi.org/10.1016/0008-6223(89)90197-8
  5. Eddie, E., "The Effect of Processing on the Structure and Properties of Carbon Fibers", Carbon, Vol. 36, No. 4, 1998, pp. 345-362. https://doi.org/10.1016/S0008-6223(97)00185-1
  6. Wangxi, Z., Jie, L., and Gang, W., "Evolution of Structure and Properties of PAN Precursors during their Conversion to Carbon Fibers", Carbon, Vol. 41, No. 14, 2003, pp. 2805-2812. https://doi.org/10.1016/S0008-6223(03)00391-9
  7. Johnson, D.J., "Structure-Property Relationships in Carbon Fibres", Journal of Physics D: Applied Physics, Vol. 20, No. 3, 1987, pp. 286-291. https://doi.org/10.1088/0022-3727/20/3/007
  8. Lee, S.H., Kim, J.H., Ku, B.C., Kim, J.K., and Joh, H.I., "Structural Evolution of Polyacrylonitrile Fibers in Stabilization and Carbonization", Advances in Chemical Engineering and Science, Vol. 2, No. 2, 2012, pp. 275-282. https://doi.org/10.4236/aces.2012.22032
  9. Mouritz, A.P., Bannister, M.K., Falzon, P.J., and Leong, K.H., "Review of Applications for Advanced Three-dimensional Fibre Textile Composites", Composite Part A: Applied Science and Manufacturing, Vol. 30, No. 12, 1999, pp. 1445-1461. https://doi.org/10.1016/S1359-835X(99)00034-2
  10. Chen, T., Liao, J., Liu, G., Zhang, F., and Gong, Q., "Effects of Needle-punched Felt Structure on the Mechanical Properties of Carbon/Carbon Composites", Carbon, Vol. 41, No. 5, 2003, pp. 993-999. https://doi.org/10.1016/S0008-6223(02)00445-1
  11. Ko, T., "Influence of Continuous Stabilization on the Physical Properties and Microstructure of PAN-based Carbon Fibers", Journal of Applied Polymer Science, Vol. 42, No. 7, 1991, pp. 1949-1957. https://doi.org/10.1002/app.1991.070420719
  12. Nunna, S., Naebe, M., Hameed, N., Fox, B.L., Creighton, C. "Evolution of Radial Heterogeneity in Polyacrylonitrile Fibres during Thermal Stabilization: Overview", Polymer Degradation and Stability, Vol. 136, 2017, pp. 20-30. https://doi.org/10.1016/j.polymdegradstab.2016.12.007
  13. Newcomb, B.A., "Processing, Structure, and Properties of Carbon Fibers", Composites Part A: Applied Science and Manufacturing, Vol. 91, No. 1, 2016, pp. 262-282. https://doi.org/10.1016/j.compositesa.2016.10.018
  14. Sadezky, A., Muckenhuber, H. Grothe, H., and Poschl, U., "Raman Microspectroscopy of Soot and Related Carbonaceous Materials: Spectral Analysis and Structural Information", Carbon, Vol. 43, No. 8, 2005, pp. 1731-1742. https://doi.org/10.1016/j.carbon.2005.02.018
  15. Huang, Y., and Young, R.J., "Effect of Fibre Microstructure upon the Modulus of PAN- and Pitch-based Carbon Fibres", Carbon, Vol. 33, No. 2, 1995, pp. 97-107. https://doi.org/10.1016/0008-6223(94)00109-D
  16. Naito, K., Tanaka, Y., Yang, J.M., and Kagawa, Y., "Tensile Properties of Ultrahigh Strength PAN-based, Ultrahigh Modulus Pitch-based and High Ductility Pitch-based Carbon Fibers", Carbon, Vol. 46, No. 2, 2008, pp. 189-195. https://doi.org/10.1016/j.carbon.2007.11.001
  17. Salim, N.V., Blight, S., Creighton, C., Nunna, S., Atkiss, S., and Razal, J.M., "The Role of Tension and Temperature for Efficient Carbonization of Polyacrylonitrile Fibers: Toward Low Cost Carbon Fibers", Industrial & Engineering Chemistry Research, Vol. 57, No. 12, 2018, pp. 4268-4276. https://doi.org/10.1021/acs.iecr.7b05336
  18. Jang, D., Joh, H.-I., Ku, B.-C., Kim, S.R., Bang, Y.H., and Lee, S., "Effect of Heating Rate in Carbonization on Mechanical Properties of Polyacrylonitrile Based Carbon Fibers", Polymer (Korea), Vol. 41, 2017, pp. 196-202. https://doi.org/10.7317/pk.2017.41.2.196