Fig. 1. Schematics of the experimental set-up for free vibration
Fig. 2. Definition of ω1, ω2 and ωn according to the half-bandwidth method
Fig. 3. Numerical model with meshed elements for free vibration test
Fig. 4. Exciting frequency response of (a) pure CF/epoxy and (b)0.1 wt%, (c) 0.2 wt%, (d) 0.4 wt% GO incorporated CF/epoxy composite
Fig. 5. Mode shapes for (a) mode 1 (b) mode 2 (c) mode 3 of 0.2 wt% GO incorporated CF/epoxy composite
Fig. 6. Variation of frequencies depending on (a) beam free length and (b) beam thickness of 0.2 wt% GO incorporated CF/epoxy composite
Table 1. Calculated values of free vibration results of GO incorporated CF/epoxy composites
Table 2. Calculated values of frequencies of 0.2 wt% GO incorporated CF/epoxy numerical model
References
- Adak, N.C., Chhetri, S., Kuila, T., Murmu, N.C., Samanta, P., and Lee, J.H., "Effects of Hydrazine Reduced Graphene Oxide on the Inter-laminar Fracture Toughness of Woven Carbon Fiber/epoxy Composite", Composites Part B: Engineering, Vol. 149, 2018, pp. 22-30. https://doi.org/10.1016/j.compositesb.2018.05.009
- Khan, S.U., Li, C.Y., Siddiqui, N.A., and Kim, J.K., "Vibration Damping Characteristics of Carbon Fiber-reinforced Composites Containing Multi-walled Carbon Nanotubes," Composites Science and Technology, Vol. 171, 2011, pp. 1486-301494. https://doi.org/10.1016/j.compscitech.2011.03.022
- Chandra, R., Singh, S.P., and Gupta, K., "Damping Studies in Fiber-reinforced Composites -a Review", Composite Structures, Vol. 46, 1999, pp. 41-51. https://doi.org/10.1016/S0263-8223(99)00041-0
- Liao, F.S., Su, A.C., and Hsu, T.C., "Vibration Damping of Interleaved Carbon Fiber-epoxy Composite Beams", Journal of Composite Materials, Vol. 28, No. 18, 1994, pp. 1840-1854. https://doi.org/10.1177/002199839402801806
- Moser, K., and Lumassegger, M., "Increasing the Damping of Flexural Vibration of Laminated FPC Structures by Incorporation of Soft Intermediate Plies with Minimum Reduction of Stiffness", Composite Structures, Vol. 10, 1988, pp. 321-333. https://doi.org/10.1016/0263-8223(88)90009-8
- Koratkar, N.A., Wei, B.Q., and Ajayan, P.M., "Carbon Nanotube Films for Damping Applications", Advanced Materials, Vol. 14, No. 13-14, 2002, pp. 997-1000. https://doi.org/10.1002/1521-4095(20020705)14:13/14<997::AID-ADMA997>3.0.CO;2-Y
- Chhetri, S., Adak, N.C., Samanta, P., Mallisetty, P.K., Murmu, N.C., and Kuila, T., "Interface Engineering for the Improvement of Mechanical and Thermal Properties of Covalent Functionalized Graphene/epoxy Composites", Journal of Applied Polymer Science, Vol. 135, No. 15, 2018, pp. 1-10.
- Adak, N.C., Chhetri, S., Kim, N.H., Murmu, N.C., Samanta, P., and Kuila, T., "Static and Dynamic Mechanical Properties of Graphene Oxide-Incorporated Woven Carbon Fiber/Epoxy Composite", Journal of Materials Engineering and Performance, Vol. 27, 2018, pp. 1138-1147. https://doi.org/10.1007/s11665-018-3201-5
- Chhetri, S., Samanta, P., Murmu, N.C., Kuila, T., and Lee, J.H., "Enhanced Mechanical Properties of Functionalized Graphene Oxide/linear Low Density Polyethylene Composites Prepared by Melt Mixing", Composite Research, Vol. 29, 2016, pp. 173-178. https://doi.org/10.7234/composres.2016.29.4.173
- Zhou, X., Shin, E., Wang, K.W., and Bakis, C.E., "Interfacial Damping Characteristics of Carbon Nanotube Composites", Composites Science and Technology, Vol. 64, 2004, pp. 2425-2437. https://doi.org/10.1016/j.compscitech.2004.06.001
- Rajoria, H., and Jalili, N., "Passive Vibration Damping Enhancement Using Carbon Nanotube-epoxy Reinforced Composites", Composites Science and Technology, Vol. 65, 2005, pp. 2079-2093. https://doi.org/10.1016/j.compscitech.2005.05.015
- Kuila, T., Bose, S., Khanra, P., Mishra, A.K., Kim, N.H., and Lee, J.H., "A Green Approach for the Reduction of Graphene Oxide by Wild Carrot Root", Carbon, Vol. 50, No. 3, 2012, pp. 914-921. https://doi.org/10.1016/j.carbon.2011.09.053
- Bachmann, H., Vibration Problems in Structures, Bulletin D'Information, Wien, No 209, 1991.