Fig. 1. XRD spectra of all specimens (omega scan).
Fig. 2. GIXRD spectra of all specimens (raw scale).
Fig. 3. GIXRD spectra of all specimens (log scale).
Fig. 4. XRD peak intensity analysis of copper nitride and copper oxide on Cu surface.
Fig. 6. XPS profiles (a) Cu2p, (b) O1s, (c) N1s.
Fig. 5. XPS profile of Cu2p peak etching before vs after (a) raw scale (b) nomalized intensity.
Fig. 7. Peak deconvolution of the Cu2p, O1s and N1s.
Fig. 8. 3D images of Surface by AFM.
Fig. 9. Surface roughness analysis by AFM.
Table 1. Ar-N2 plasma treatment conditions.
References
- C. S. Tan, "Wafer level 3-D ICs process technology", pp.1-11, Springer Science & Business Media, Springer (2009).
- C. T. Ko, and K. N. Chen, "Low temperature bonding technology for 3D integration", Microelectronics Reliability., 52(2), 302 (2012). https://doi.org/10.1016/j.microrel.2011.03.038
- S. E. Kim, and S. D. Kim, "Wafer level Cu-Cu direct bonding for 3D integration", Microelectronic Engineering., 137(1), 158 (2015). https://doi.org/10.1016/j.mee.2014.12.012
- J. H. Lau, M. Li, M. L. Qingqian, T. Chen, I. Xu, Q. X. Yong, Z. Cheng, N. Fan, E. Kuah, Z. Li, K. H. Tan, Y. M. Cheung, E. Ng, P. Lo, W. Kai, J. Hao, K. S. Wee, J. Ran, C. Xi, R. Beica, S. P. Lim, N. C. Lee, C. T. Ko, H. Yang, Y. H. Chen, M. Tao, J. Lo, and R. S. W. Lee, "Fan-out wafer-level packaging for Heterogenous Integration", IEEE Transactions on Components, Packaging and Manufacturing Technology., 8(9), 1544 (2018). https://doi.org/10.1109/TCPMT.2018.2848649
- P. Gagnon, C. Bergeron, R. Langlois, S. Barbeau, S. Whitehead, C. Tyberg, R. Robertazzi, K. Sakuma, M. wordeman, and M. Scheuermann, "Thermo-compression bonding and mass reflow assembly process of 3D logic die stacks", Proc. 67th Electronic Components and Techology Conference (ECTC), San Diego, IEEE (2017).
- S. Yang, H. T. Hung, C. R. Kao, and H. Nishikawa, "Development of Low-temperature, Presssureless Copper-to-Copper Bonding by Microfluidic Electroless Interconnection Process", Proc. 68th Electronic Components and Technology Conference (ECTC), San Diego, IEEE (2018).
- J. Fan, D. F. Lim, and C. S. Tan, "Effects of surface treatment on the bonding quality of wafer-level Cu-to-Cu thermo-compression bonding for 3D integration", Journal of Micromechanics and Microengineering., 23(4), 045025 (2013). https://doi.org/10.1088/0960-1317/23/4/045025
- E. J. Jang, J. W. Kim, B. Kim, T. Matthias, S. M. Hyun, H. J. Lee, and Y. B. Park, "Measurement and Improvement of Quantitative Interfacial Adhesion Energy of Cu-Cu Bonding of 3-D Integration", Proc. Journal of the Korean society of machine tool engineers, (2009).
- L. Peng, H. Li, D. F. Lim, S. Gao, and C. S. Tan, "High-density 3-D interconnect of Cu-Cu contacts with enhanced contact resistance by self-assembled monolayer (SAM) passivation", IEEE Transactions on Electron Devices., 58(8), 2500 (2011). https://doi.org/10.1109/TED.2011.2156415
- E. J. Jang, S. M. Hyun, H. J. Lee, and Y. B. Park, "Effect of Wet Pretreatment on Interfacial Adhesion Energy of Cu-Cu Thermocompression Bond for 3D IC Packages", Journal of Electronic Materials, 38(12), 2449 (2009). https://doi.org/10.1007/s11664-009-0942-9
- W. Yang, Y. Lu, C. Zhou, J. Zhang, and T. Suga, "Study of Cu Film Surface Treatment Using Formic Acid Vapor/Solution for Low Temperature Bonding", Journal of The Electrochemical Sociery, 165(4), 3080 (2018).
- M. S. Park, S. J. Baek, S. D. Kim, and S. E. Kim, "Argon Plasma Treatment on Cu surface for Cu bonding in 3D integration and Their Characteristics", Applied Surface Science, 324(1), 168 (2015). https://doi.org/10.1016/j.apsusc.2014.10.098
- I. Platzman, R. Brener, H. Haick, and R. Tannenbaum, "Oxidation of Polycrystalline Copper Thin Films at Ambient Conditions", The Journal of Physical Chemistry C, 112(4), 1101 (2008). https://doi.org/10.1021/jp076981k
- A. Miura, T. Takei, and N. Kumada, "Synthesis of Cu3N from CuO and NaNH2", Journal of Asian Ceramic Societies, 2(4), 326 (2014). https://doi.org/10.1016/j.jascer.2014.08.007
- G. Soto, J. A. Diaz, and W. de la Cruz, "Copper nitride films produced by reactive pulsed laser deposition", Materials Letters., 57(26-27), 4130 (2003). https://doi.org/10.1016/S0167-577X(03)00277-5
- C. Navio, M. J. Capitan, J. Alvarez, F. Yndurain, and R. Miranda, "Intrinsic surface band bending in Cu3N(100) ultrathin films", The American Physical Society, 76(8), 085105 (2007).
- M. C. Biesinger, L. W. M. Lau, A. R. Gerson, and R. St. C. Smart, "Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn", Applied Surface Science, 257(3), 887 (2010). https://doi.org/10.1016/j.apsusc.2010.07.086
- X. Y. Fan, Z. J. Li, A. L. Meng, C. Li, Z. G. Wu, and P. X. Yan, "Study on the structure, morphology and properties of Fe-doped Cu3N films", Journal of Physics D: Applied Physics, 47(18), 185304 (2014). https://doi.org/10.1088/0022-3727/47/18/185304
Cited by
- Cu-SiO2 하이브리드 본딩 vol.27, pp.1, 2018, https://doi.org/10.6117/kmeps.2020.27.1.0017