DOI QR코드

DOI QR Code

Structural Characteristics of Ar-N2 Plasma Treatment on Cu Surface

Ar-N2 플라즈마가 Cu 표면에 미치는 구조적 특성 분석

  • Park, Hae-Sung (Department of Mechanical Engineering, Seoul National University of Science and Technology) ;
  • Kim, Sarah Eunkyung (Graduate School of Nano-IT Design Convergence, Seoul National University of Science and Technology)
  • 박해성 (서울과학기술대학교 일반대학원 기계공학과) ;
  • 김사라은경 (서울과학기술대학교 나노IT디자인융합대학원)
  • Received : 2018.11.14
  • Accepted : 2018.12.01
  • Published : 2018.12.31

Abstract

The effect of $Ar-N_2$ plasma treatment on Cu surface as one of solutions to realize reliable Cu-Cu wafer bonding was investigated. Structural characteristic of $Ar-N_2$ plasma treated Cu surface were analyzed using X-ray diffraction, X-ray photoelectron spectroscopy, atomic force microscope. Ar gas was used for a plasma ignition and to activate Cu surface by ion bombardment, and $N_2$ gas was used to protect the Cu surface from contamination such as -O or -OH by forming a passivation layer. The Cu specimen under high Ar partial pressure plasma treatment showed more copper oxide due to the activation on Cu surface, while Cu surface after high $N_2$ gas partial pressure plasma treatment showed less copper oxide due to the formation of Cu-N or Cu-O-N passivation layer. It was confirmed that nitrogen plasma can prohibit Cu-O formation on Cu surface, but nitrogen partial pressure in the $Ar-N_2$ plasma should be optimized for the formation of nitrogen passivation layer on the entire surface of Cu wafer.

Cu-Cu 웨이퍼 본딩 강도를 향상시키기 위한 Cu 박막의 표면처리 기술로 $Ar-N_2$ 플라즈마 처리 공정에 대해 연구하였다. $Ar-N_2$ 플라즈마 처리가 Cu 표면의 구조적 특성에 미치는 영향을 X선 회절분석법, X선 광전자 분광법, 원자간력현미경을 이용하여 분석하였다. Ar 가스는 플라즈마 점화 및 이온 충격에 의한 Cu 표면의 활성화에 사용되고, $N_2$ 가스는 패시베이션(passivation) 층을 형성하여 -O 또는 -OH와 같은 오염으로부터 Cu 표면을 보호하기 위한 목적으로 사용되었다. Ar 분압이 높은 플라즈마로 처리한 시험편은 표면이 활성화되어 공정 이후 더 많은 산화가 진행되었고, $N_2$ 분압이 높은 플라즈마 시험편에서는 Cu-N 및 Cu-O-N과 같은 패시베이션 층과 함께 상대적으로 낮은 수치의 산화도가 관찰되었다. 본 연구에서는 $Ar-N_2$ 플라즈마 처리가 Cu 표면에서 Cu-O 형성 억제 반응에 기여하는 것을 확인할 수 있었으나 추가 연구를 통하여 질소 패시베이션 층이 Cu 웨이퍼 전면에 형성되기 위한 플라즈마 가스 분압 최적화를 진행하고자 한다.

Keywords

MOKRBW_2018_v25n4_75_f0001.png 이미지

Fig. 1. XRD spectra of all specimens (omega scan).

MOKRBW_2018_v25n4_75_f0002.png 이미지

Fig. 2. GIXRD spectra of all specimens (raw scale).

MOKRBW_2018_v25n4_75_f0003.png 이미지

Fig. 3. GIXRD spectra of all specimens (log scale).

MOKRBW_2018_v25n4_75_f0004.png 이미지

Fig. 4. XRD peak intensity analysis of copper nitride and copper oxide on Cu surface.

MOKRBW_2018_v25n4_75_f0005.png 이미지

Fig. 6. XPS profiles (a) Cu2p, (b) O1s, (c) N1s.

MOKRBW_2018_v25n4_75_f0006.png 이미지

Fig. 5. XPS profile of Cu2p peak etching before vs after (a) raw scale (b) nomalized intensity.

MOKRBW_2018_v25n4_75_f0007.png 이미지

Fig. 7. Peak deconvolution of the Cu2p, O1s and N1s.

MOKRBW_2018_v25n4_75_f0008.png 이미지

Fig. 8. 3D images of Surface by AFM.

MOKRBW_2018_v25n4_75_f0009.png 이미지

Fig. 9. Surface roughness analysis by AFM.

Table 1. Ar-N2 plasma treatment conditions.

MOKRBW_2018_v25n4_75_t0001.png 이미지

References

  1. C. S. Tan, "Wafer level 3-D ICs process technology", pp.1-11, Springer Science & Business Media, Springer (2009).
  2. C. T. Ko, and K. N. Chen, "Low temperature bonding technology for 3D integration", Microelectronics Reliability., 52(2), 302 (2012). https://doi.org/10.1016/j.microrel.2011.03.038
  3. S. E. Kim, and S. D. Kim, "Wafer level Cu-Cu direct bonding for 3D integration", Microelectronic Engineering., 137(1), 158 (2015). https://doi.org/10.1016/j.mee.2014.12.012
  4. J. H. Lau, M. Li, M. L. Qingqian, T. Chen, I. Xu, Q. X. Yong, Z. Cheng, N. Fan, E. Kuah, Z. Li, K. H. Tan, Y. M. Cheung, E. Ng, P. Lo, W. Kai, J. Hao, K. S. Wee, J. Ran, C. Xi, R. Beica, S. P. Lim, N. C. Lee, C. T. Ko, H. Yang, Y. H. Chen, M. Tao, J. Lo, and R. S. W. Lee, "Fan-out wafer-level packaging for Heterogenous Integration", IEEE Transactions on Components, Packaging and Manufacturing Technology., 8(9), 1544 (2018). https://doi.org/10.1109/TCPMT.2018.2848649
  5. P. Gagnon, C. Bergeron, R. Langlois, S. Barbeau, S. Whitehead, C. Tyberg, R. Robertazzi, K. Sakuma, M. wordeman, and M. Scheuermann, "Thermo-compression bonding and mass reflow assembly process of 3D logic die stacks", Proc. 67th Electronic Components and Techology Conference (ECTC), San Diego, IEEE (2017).
  6. S. Yang, H. T. Hung, C. R. Kao, and H. Nishikawa, "Development of Low-temperature, Presssureless Copper-to-Copper Bonding by Microfluidic Electroless Interconnection Process", Proc. 68th Electronic Components and Technology Conference (ECTC), San Diego, IEEE (2018).
  7. J. Fan, D. F. Lim, and C. S. Tan, "Effects of surface treatment on the bonding quality of wafer-level Cu-to-Cu thermo-compression bonding for 3D integration", Journal of Micromechanics and Microengineering., 23(4), 045025 (2013). https://doi.org/10.1088/0960-1317/23/4/045025
  8. E. J. Jang, J. W. Kim, B. Kim, T. Matthias, S. M. Hyun, H. J. Lee, and Y. B. Park, "Measurement and Improvement of Quantitative Interfacial Adhesion Energy of Cu-Cu Bonding of 3-D Integration", Proc. Journal of the Korean society of machine tool engineers, (2009).
  9. L. Peng, H. Li, D. F. Lim, S. Gao, and C. S. Tan, "High-density 3-D interconnect of Cu-Cu contacts with enhanced contact resistance by self-assembled monolayer (SAM) passivation", IEEE Transactions on Electron Devices., 58(8), 2500 (2011). https://doi.org/10.1109/TED.2011.2156415
  10. E. J. Jang, S. M. Hyun, H. J. Lee, and Y. B. Park, "Effect of Wet Pretreatment on Interfacial Adhesion Energy of Cu-Cu Thermocompression Bond for 3D IC Packages", Journal of Electronic Materials, 38(12), 2449 (2009). https://doi.org/10.1007/s11664-009-0942-9
  11. W. Yang, Y. Lu, C. Zhou, J. Zhang, and T. Suga, "Study of Cu Film Surface Treatment Using Formic Acid Vapor/Solution for Low Temperature Bonding", Journal of The Electrochemical Sociery, 165(4), 3080 (2018).
  12. M. S. Park, S. J. Baek, S. D. Kim, and S. E. Kim, "Argon Plasma Treatment on Cu surface for Cu bonding in 3D integration and Their Characteristics", Applied Surface Science, 324(1), 168 (2015). https://doi.org/10.1016/j.apsusc.2014.10.098
  13. I. Platzman, R. Brener, H. Haick, and R. Tannenbaum, "Oxidation of Polycrystalline Copper Thin Films at Ambient Conditions", The Journal of Physical Chemistry C, 112(4), 1101 (2008). https://doi.org/10.1021/jp076981k
  14. A. Miura, T. Takei, and N. Kumada, "Synthesis of Cu3N from CuO and NaNH2", Journal of Asian Ceramic Societies, 2(4), 326 (2014). https://doi.org/10.1016/j.jascer.2014.08.007
  15. G. Soto, J. A. Diaz, and W. de la Cruz, "Copper nitride films produced by reactive pulsed laser deposition", Materials Letters., 57(26-27), 4130 (2003). https://doi.org/10.1016/S0167-577X(03)00277-5
  16. C. Navio, M. J. Capitan, J. Alvarez, F. Yndurain, and R. Miranda, "Intrinsic surface band bending in Cu3N(100) ultrathin films", The American Physical Society, 76(8), 085105 (2007).
  17. M. C. Biesinger, L. W. M. Lau, A. R. Gerson, and R. St. C. Smart, "Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn", Applied Surface Science, 257(3), 887 (2010). https://doi.org/10.1016/j.apsusc.2010.07.086
  18. X. Y. Fan, Z. J. Li, A. L. Meng, C. Li, Z. G. Wu, and P. X. Yan, "Study on the structure, morphology and properties of Fe-doped Cu3N films", Journal of Physics D: Applied Physics, 47(18), 185304 (2014). https://doi.org/10.1088/0022-3727/47/18/185304

Cited by

  1. Cu-SiO2 하이브리드 본딩 vol.27, pp.1, 2018, https://doi.org/10.6117/kmeps.2020.27.1.0017