DOI QR코드

DOI QR Code

Comparison of Thermal Energy Harvesting Characteristics of Thermoelectric Thin-Film Modules with Different Thin-Film Leg Diameters

박막레그 직경에 따른 열전박막모듈의 열에너지 하비스팅 특성 비교

  • Kim, Woo-Jun (Department of Materials Science and Engineering, Hongik University) ;
  • Oh, Tae Sung (Department of Materials Science and Engineering, Hongik University)
  • 김우준 (홍익대학교 공과대학 신소재공학과) ;
  • 오태성 (홍익대학교 공과대학 신소재공학과)
  • Received : 2018.11.21
  • Accepted : 2018.12.20
  • Published : 2018.12.31

Abstract

Thermoelectric thin film modules were fabricated by electroplating p-type $Sb_2Te_3$and n-type $Bi_2Te_3$ thin film legs with the same thickness of $20{\mu}m$ and different diameters of $100{\mu}m$, $300{\mu}m$, and $500{\mu}m$, respectively. The output voltage and output power of thin film modules were measured and compared as a function of the leg diameter. The modules processed with thin film legs of $100{\mu}m$, $300{\mu}m$, and $500{\mu}m$-diameter exhibited open circuit voltages of 365 mV at ${\Delta}T=36.7K$, 142 mV at ${\Delta}T=37.5K$, and 53 mV at ${\Delta}T=36.1K$, respectively. Maximum output powers of $845{\mu}W$ at ${\Delta}T=36.7K$, $631{\mu}W$ at ${\Delta}T=37.5K$, and $276{\mu}W$ at ${\Delta}T=36.1K$ were obtained for the modules fabricated with the thin film legs of $100{\mu}m$, $300{\mu}m$, and $500{\mu}m$-diameter, respectively.

두께가 $20{\mu}m$이며, 직경이 각기 $100{\mu}m$, $300{\mu}m$, $500{\mu}m$인 p형 $Sb_2Te_3$와 n형 $Bi_2Te_3$ 박막레그들을 전기도금하여 열전박막모듈을 형성한 후, 박막레그의 직경에 따른 출력전압과 출력전력을 비교하였다. $100{\mu}m$ 직경 박막레그들로 구성된 모듈은 ${\Delta}T=36.7K$에서 365 mV, $300{\mu}m$ 직경 박막레그들로 형성한 모듈은 ${\Delta}T=37.5K$에서 142 mV, $500{\mu}m$ 직경 박막레그들로 제작한 모듈은 ${\Delta}T=36.1K$에서 53 mV의 open circuit 전압을 나타내었다. $100{\mu}m$ 직경 박막레그 모듈은 ${\Delta}T=36.7K$에서 $845{\mu}W$, $300{\mu}m$ 직경 박막레그 모듈은 ${\Delta}T=37.5K$에서 $631{\mu}W$, $500{\mu}m$ 직경 박막레그 모듈은 ${\Delta}T=36.1K$에서 $276{\mu}W$의 최대출력전력을 나타내었다.

Keywords

MOKRBW_2018_v25n4_67_f0001.png 이미지

Fig. 1. The layout drawing of the module consisting of the p-type Sb2Te3 and n-type Bi2Te3 legs of 500 μm-diameter.

MOKRBW_2018_v25n4_67_f0002.png 이미지

Fig. 2. Schematic illustration of the fabrication process for the upper part of a thin film module: (a) sputtering of the Ti/Cu metallization, (b) photoresist (PR) patterning, (c) electrodepositing of the Au, (d) electrodeposition of the Sb2Te3 thin film legs, (e) electrodeposition of the Ni/Sn bonding layer, (f) electrodeposition of the Bi2Te3 thin film legs, (g) electrodeposition of the Ni/Sn bonding layer, and (g) patterning the electrodes.

MOKRBW_2018_v25n4_67_f0003.png 이미지

Fig. 3. Schematic illustration of the fabrication process for the lower part of a thin film module: (a) sputtering of the Ti/ Cu/Ti metallization, (b) PR patterning electrodepositing the Cu bumps, (c) electrodeposition the Sn bonding layer, and (d) patterning the electrodes.

MOKRBW_2018_v25n4_67_f0004.png 이미지

Fig. 4. Schematic illustration of a thin film module processed by flip-chip bonding.

MOKRBW_2018_v25n4_67_f0005.png 이미지

Fig. 5. Scanning electron micrographs of the thin film legs formed in the upper part of a module and the bonding bumps processed in the lower part of the module.

MOKRBW_2018_v25n4_67_f0006.png 이미지

Fig. 7. Output voltage-temperature difference curves of the thin film modules consisting of the 100-μm, 300-μm, and 500-μm-diameter legs.

MOKRBW_2018_v25n4_67_f0007.png 이미지

Fig. 8. Output voltage–current curves of the thin film modules processed with the (a) 100-μm, (b) 300-μm, and (c) 500-μm-diameter legs.

MOKRBW_2018_v25n4_67_f0008.png 이미지

Fig. 9. Module resistance-temperature difference curves of the thin film modules consisting of the 100-μm, 300-μm, and 500-μm-diameter legs.

MOKRBW_2018_v25n4_67_f0009.png 이미지

Fig. 10. Output power-current curves of the thin film modules processed with the (a) 100-μm, (b) 300-μm, and (c) 500-μm-diameter legs.

MOKRBW_2018_v25n4_67_f0010.png 이미지

Fig. 11. Maximum output power-temperature difference curves of the thin film modules fabricated with the 100-μm, 300-μm, and 500-μm-diameter legs.

MOKRBW_2018_v25n4_67_f0011.png 이미지

Fig. 12. Cross-sectional scanning electron micrographs of the thin film module, processed with the 500-μm-diameter legs, showing that the leg was not completely bonded to the Cu bonding pad at the peripheral area.

MOKRBW_2018_v25n4_67_f0012.png 이미지

Fig. 6. (a) A photo of the thin film module processed with Sb2Te3 and Bi2Te3 legs of 300 μm-diameter and (b) cross-sectional scanning electron micrograph of the module.

Table 1. Thermoelectric properties of the (Ti/Cu/Au)/Bi2Te3 and the (Ti/Cu/Au)/Sb2Te3.

MOKRBW_2018_v25n4_67_t0001.png 이미지

References

  1. J. H. Kim, W. J. Kim, and T. S. Oh, "Thermoelectric Thin Film Devices for Energy Harvesting with the Heat Dissipated from High-power Light-emitting Diodes", J. Electron. Mater., 45(7), 3410 (2016). https://doi.org/10.1007/s11664-016-4485-6
  2. R. J. M. Vullers, R. van Schaijk, I. Doms, C. Van Hoof, and R. Mertens, "Micropower Energy Harvesting", Solid-State Electron., 53, 684 (2009). https://doi.org/10.1016/j.sse.2008.12.011
  3. T. Huesgen, P. Woias, and N. Kockmann, "Design and Fabrication of MEMS Thermoelectric Generators with High Temperature Efficiency", Sens. Actuators A, 145-146, 423 (2008). https://doi.org/10.1016/j.sna.2007.11.032
  4. W. Wang, V. Cionca, N. Wang, M. Hayes, B. O'Flynn, and C. O'Mathuna, "Thermoelectric Energy Harvesting for Building Energy Management Wireless Sensor Networks", Inter. J. Distrib. Sens. Netw., 2013, 232438 (2013).
  5. W. Glatz, S. Muntwyler, and C. Hierold, "Optimization and Fabrication of Thick Flexible Polymer Based Micro Thermoelectric Generator", Sens. Actuators A, 132, 337 (2006). https://doi.org/10.1016/j.sna.2006.04.024
  6. A. Sharma, J. H. Lee, K. H. Kim, and J. P. Jung, "Recent Advances in Thermoelectric Power Generation Technology", J. Microelectron. Packag. Soc., 24(1), 9 (2017). https://doi.org/10.6117/kmeps.2017.24.1.009
  7. J. H. Ji, G. H. Jo, J. G. Ha, S. M. Koo, M. Kamiko, J. H. Hong, and J. H. Koh, "Recycled Thermal Energy from High Power Light Emitting Diode Light Source", J. Nanosci. Nanotechnol., 18, 6029 (2018). https://doi.org/10.1166/jnn.2018.15593
  8. J. Duga, M. Knap, and T. C. Lui, "Energy Harvested LED Luminary", Proc. 20th International Workshop on Thermal Investigations of ICs and Systems, London, IEEE (2014).
  9. P. Mahalakshmi, and S. Kalaiselvi, "Energy Harvesting from Human Body using Thermoelectric Generator", Inter. J. Adv. Res. Electric. Electron. Instrum. Eng., 3(5), 9486 (2014).
  10. J. A. Paradiso, and T. Starner, "Energy Scavenging for Mobile and Wireless Electronics", IEEE Pervasive Computing, 4(1), 18 (2005).
  11. M. Y. Kim, and T. S. Oh, "Thermoelectric Power Generation Characteristics of a Thin-Film Device Consisting of Electrodeposited n-$Bi_2Te_3$ and p-$Sb_2Te_3$ Thin-film Legs", J. Electron. Mater., 42, 2752 (2013). https://doi.org/10.1007/s11664-013-2671-3
  12. G. J. Snyder, J. R. Lim, C. -K. Huang, and J. -P. Fleurial, "Thermoelectric Microdevice Fabricated by a MEMS-like Electrochemical Process", Nat. Mater., 2, 528 (2003). https://doi.org/10.1038/nmat943
  13. M. Y. Kim, and T. S. Oh, "Thermoelectric Thin Film Device of Cross-plane Configuration Processed by Electrodeposition and Flip-chip Bonding", Mater. Trans., 53(12) 2160 (2012). https://doi.org/10.2320/matertrans.M2012265
  14. J. P. Carmo, J. F. Ribeiro, M. F. Goncalves, and J. H. Correia, "Thermoelectric Generator and Solid-state Battery for Standalone Microsystems", J. Micromech. Microeng., 20, 1 (2010).
  15. J. M. Bae, M. Y. Kim, and T. S. Oh, "Fabrication Process and Sensing Characteristics of the In-plane Thermoelectric Sensor Consisting of the Evaporated p-type Sb-Te and n-type Bi-Te Thin Films", J. Microelectron. Packag. Soc., 19(1), 33 (2012). https://doi.org/10.6117/kmeps.2012.19.1.033
  16. D. H. Park, and T. S. Oh, "Thermoelectric Properties of the n-type $Bi_2(Te_{0.9}Se_{0.1})_3$ Processed by Hot Pressing with Dispersion of 0.5 vol% $TiO_2$ Nanopowders", J. Microelectron. Packag. Soc., 20(1), 15 (2013). https://doi.org/10.6117/kmeps.2013.20.1.015
  17. J. P. Rojasa, D. Singh, S. B. Inayat, G. A. Torres Sevilla, H. M. Fahad, and M. M. Hussain, "Review-Micro and Nano-Engineering Enabled New Generation of Thermoelectric Generator Devices and Applications", ECS J. Solid State Sci. Technol., 6(3), N3036 (2017). https://doi.org/10.1149/2.0081703jss
  18. D. H. Park, M. R. Roh, M. Y. Kim, and T. S. Oh, "Thermoelectric Properties of the n-type $Bi_2(Te,Se)_3$ Processed by Hot Pressing", J. Microelectron. Packag. Soc., 17(2), 49 (2010).
  19. M. R. Roh, J. Y. Choi, and T. S. Oh, "Thermoelectric Properties of the Hot-pressed $Bi_2(Te_{0.9}Se_{0.1})_3$ with Dispersion of Tungsten Powders", J. Microelectron. Packag. Soc., 18(4), 55 (2011). https://doi.org/10.6117/KMEPS.2011.18.4.055
  20. M. S. Dresselhaus, G. Dresselhaus, X. Sun, Z. Zhang, S. B. Cronin, T. Koga, J. Y. Ming, and G. Chen, "The Promise of Low-Dimensional Thermoelectric Materials", Microscale Thermophys. Eng., 3, 89 (1999). https://doi.org/10.1080/108939599199774
  21. H. Fateh, C. A. Baker, M. J. Hall, and L. Shi, "High Fidelity Finite Difference Model for Exploring Multi-parameter Thermoelectric Generator Design Space", Appl. Energy., 129, 373 (2014). https://doi.org/10.1016/j.apenergy.2014.04.088
  22. S. Kumar, S. D. Heister, X. Xu, and J. R. Salvador, "Optimization of Thermoelectric Components for Automobile Waste Heat Recovery Systems", J. Electric. Mater., 44(10), 3627 (2015). https://doi.org/10.1007/s11664-015-3912-4
  23. A. Z. Sahin, and B. S. Yibas, "The Thermoelement as Thermoelectric Power Generator: Effect of Leg Geometry on the Efficiency and Power Generation", Energy Convers. Manag., 65, 26 (2013). https://doi.org/10.1016/j.enconman.2012.07.020
  24. F. Meng, L. Chen, and F. Sun, "Effects of Thermocouples' Physical Size on the Performance of the TEG-TEH System", Inter. J. Low Carbon Technol., 11, 375 (2016). https://doi.org/10.1093/ijlct/ctt080
  25. J. P. Schaffer, A. Saxena, S. D. Antolovich, T. H. Sanders Jr., and S. B. Warner, "The Science and Design of Engineering Materials", Inter. Ed., 577, Irwin, Chicago (1995).
  26. K. J. Shin, and T. S. Oh, "Micro-power Generation Characteristics of Thermoelectric Thin Film Devices Processed by Electrodeposition and Flip-chip Bonding", J. Electron. Mater., 44(6), 2026 (2015). https://doi.org/10.1007/s11664-015-3647-2
  27. R. Rostek, J. Kottmeier, M. Kratschmer, G. Blackburn, F. Goldschmidtboing, M. Kroner, and P. Woias, "Thermoelectric Characterization of Electrochemically Deposited $Bi_2Te_3$ Films Accounting for the Presence of Conductive Seed Layers", J. Electrochem. Soc., 160, D408 (2013). https://doi.org/10.1149/2.101309jes
  28. H. P. Nguyen, J. Su, Z. Wang, R. J. M. Vullers, P. M. Vereecken, and J. Fransaer, "Measurement of Seebeck Coefficient of Electroplated Thermoelectric Films in Presence of a Seed Layer", J. Mater. Res., 26, 1953 (2011). https://doi.org/10.1557/jmr.2011.83
  29. K. J. Shin, and T. S. Oh, "Thermoelectric Power-generation Characteristics of a Thin-film Device Processed by the Flipchip Bonding of $Bi_2Te_3$ and $Sb_2Te_3$ Thin-film Legs using an Anisotropic Conductive Adhesive", Mater. Trans., 56(10), 1719 (2015). https://doi.org/10.2320/matertrans.M2015236
  30. W. Glatz, E. Schwyter, L. Durrer, and C. Hierold, "$Bi_2Te_3$-Based Flexible Micro Thermoelectric Generator With Optimized Design", J. Microelectromech. Syst., 18, 763 (2009). https://doi.org/10.1109/JMEMS.2009.2021104

Cited by

  1. PDMS 충진법을 이용하여 형성한 유연열전모듈의 발전특성과 굽힘특성 vol.26, pp.4, 2018, https://doi.org/10.6117/kmeps.2019.26.4.119
  2. PDMS로 충진된 신축열전모듈의 신축특성과 발전특성 vol.26, pp.4, 2018, https://doi.org/10.6117/kmeps.2019.26.4.149