Fig. 1. The layout drawing of the module consisting of the p-type Sb2Te3 and n-type Bi2Te3 legs of 500 μm-diameter.
Fig. 2. Schematic illustration of the fabrication process for the upper part of a thin film module: (a) sputtering of the Ti/Cu metallization, (b) photoresist (PR) patterning, (c) electrodepositing of the Au, (d) electrodeposition of the Sb2Te3 thin film legs, (e) electrodeposition of the Ni/Sn bonding layer, (f) electrodeposition of the Bi2Te3 thin film legs, (g) electrodeposition of the Ni/Sn bonding layer, and (g) patterning the electrodes.
Fig. 3. Schematic illustration of the fabrication process for the lower part of a thin film module: (a) sputtering of the Ti/ Cu/Ti metallization, (b) PR patterning electrodepositing the Cu bumps, (c) electrodeposition the Sn bonding layer, and (d) patterning the electrodes.
Fig. 4. Schematic illustration of a thin film module processed by flip-chip bonding.
Fig. 5. Scanning electron micrographs of the thin film legs formed in the upper part of a module and the bonding bumps processed in the lower part of the module.
Fig. 7. Output voltage-temperature difference curves of the thin film modules consisting of the 100-μm, 300-μm, and 500-μm-diameter legs.
Fig. 8. Output voltage–current curves of the thin film modules processed with the (a) 100-μm, (b) 300-μm, and (c) 500-μm-diameter legs.
Fig. 9. Module resistance-temperature difference curves of the thin film modules consisting of the 100-μm, 300-μm, and 500-μm-diameter legs.
Fig. 10. Output power-current curves of the thin film modules processed with the (a) 100-μm, (b) 300-μm, and (c) 500-μm-diameter legs.
Fig. 11. Maximum output power-temperature difference curves of the thin film modules fabricated with the 100-μm, 300-μm, and 500-μm-diameter legs.
Fig. 12. Cross-sectional scanning electron micrographs of the thin film module, processed with the 500-μm-diameter legs, showing that the leg was not completely bonded to the Cu bonding pad at the peripheral area.
Fig. 6. (a) A photo of the thin film module processed with Sb2Te3 and Bi2Te3 legs of 300 μm-diameter and (b) cross-sectional scanning electron micrograph of the module.
Table 1. Thermoelectric properties of the (Ti/Cu/Au)/Bi2Te3 and the (Ti/Cu/Au)/Sb2Te3.
References
- J. H. Kim, W. J. Kim, and T. S. Oh, "Thermoelectric Thin Film Devices for Energy Harvesting with the Heat Dissipated from High-power Light-emitting Diodes", J. Electron. Mater., 45(7), 3410 (2016). https://doi.org/10.1007/s11664-016-4485-6
- R. J. M. Vullers, R. van Schaijk, I. Doms, C. Van Hoof, and R. Mertens, "Micropower Energy Harvesting", Solid-State Electron., 53, 684 (2009). https://doi.org/10.1016/j.sse.2008.12.011
- T. Huesgen, P. Woias, and N. Kockmann, "Design and Fabrication of MEMS Thermoelectric Generators with High Temperature Efficiency", Sens. Actuators A, 145-146, 423 (2008). https://doi.org/10.1016/j.sna.2007.11.032
- W. Wang, V. Cionca, N. Wang, M. Hayes, B. O'Flynn, and C. O'Mathuna, "Thermoelectric Energy Harvesting for Building Energy Management Wireless Sensor Networks", Inter. J. Distrib. Sens. Netw., 2013, 232438 (2013).
- W. Glatz, S. Muntwyler, and C. Hierold, "Optimization and Fabrication of Thick Flexible Polymer Based Micro Thermoelectric Generator", Sens. Actuators A, 132, 337 (2006). https://doi.org/10.1016/j.sna.2006.04.024
- A. Sharma, J. H. Lee, K. H. Kim, and J. P. Jung, "Recent Advances in Thermoelectric Power Generation Technology", J. Microelectron. Packag. Soc., 24(1), 9 (2017). https://doi.org/10.6117/kmeps.2017.24.1.009
- J. H. Ji, G. H. Jo, J. G. Ha, S. M. Koo, M. Kamiko, J. H. Hong, and J. H. Koh, "Recycled Thermal Energy from High Power Light Emitting Diode Light Source", J. Nanosci. Nanotechnol., 18, 6029 (2018). https://doi.org/10.1166/jnn.2018.15593
- J. Duga, M. Knap, and T. C. Lui, "Energy Harvested LED Luminary", Proc. 20th International Workshop on Thermal Investigations of ICs and Systems, London, IEEE (2014).
- P. Mahalakshmi, and S. Kalaiselvi, "Energy Harvesting from Human Body using Thermoelectric Generator", Inter. J. Adv. Res. Electric. Electron. Instrum. Eng., 3(5), 9486 (2014).
- J. A. Paradiso, and T. Starner, "Energy Scavenging for Mobile and Wireless Electronics", IEEE Pervasive Computing, 4(1), 18 (2005).
-
M. Y. Kim, and T. S. Oh, "Thermoelectric Power Generation Characteristics of a Thin-Film Device Consisting of Electrodeposited n-
$Bi_2Te_3$ and p-$Sb_2Te_3$ Thin-film Legs", J. Electron. Mater., 42, 2752 (2013). https://doi.org/10.1007/s11664-013-2671-3 - G. J. Snyder, J. R. Lim, C. -K. Huang, and J. -P. Fleurial, "Thermoelectric Microdevice Fabricated by a MEMS-like Electrochemical Process", Nat. Mater., 2, 528 (2003). https://doi.org/10.1038/nmat943
- M. Y. Kim, and T. S. Oh, "Thermoelectric Thin Film Device of Cross-plane Configuration Processed by Electrodeposition and Flip-chip Bonding", Mater. Trans., 53(12) 2160 (2012). https://doi.org/10.2320/matertrans.M2012265
- J. P. Carmo, J. F. Ribeiro, M. F. Goncalves, and J. H. Correia, "Thermoelectric Generator and Solid-state Battery for Standalone Microsystems", J. Micromech. Microeng., 20, 1 (2010).
- J. M. Bae, M. Y. Kim, and T. S. Oh, "Fabrication Process and Sensing Characteristics of the In-plane Thermoelectric Sensor Consisting of the Evaporated p-type Sb-Te and n-type Bi-Te Thin Films", J. Microelectron. Packag. Soc., 19(1), 33 (2012). https://doi.org/10.6117/kmeps.2012.19.1.033
-
D. H. Park, and T. S. Oh, "Thermoelectric Properties of the n-type
$Bi_2(Te_{0.9}Se_{0.1})_3$ Processed by Hot Pressing with Dispersion of 0.5 vol%$TiO_2$ Nanopowders", J. Microelectron. Packag. Soc., 20(1), 15 (2013). https://doi.org/10.6117/kmeps.2013.20.1.015 - J. P. Rojasa, D. Singh, S. B. Inayat, G. A. Torres Sevilla, H. M. Fahad, and M. M. Hussain, "Review-Micro and Nano-Engineering Enabled New Generation of Thermoelectric Generator Devices and Applications", ECS J. Solid State Sci. Technol., 6(3), N3036 (2017). https://doi.org/10.1149/2.0081703jss
-
D. H. Park, M. R. Roh, M. Y. Kim, and T. S. Oh, "Thermoelectric Properties of the n-type
$Bi_2(Te,Se)_3$ Processed by Hot Pressing", J. Microelectron. Packag. Soc., 17(2), 49 (2010). -
M. R. Roh, J. Y. Choi, and T. S. Oh, "Thermoelectric Properties of the Hot-pressed
$Bi_2(Te_{0.9}Se_{0.1})_3$ with Dispersion of Tungsten Powders", J. Microelectron. Packag. Soc., 18(4), 55 (2011). https://doi.org/10.6117/KMEPS.2011.18.4.055 - M. S. Dresselhaus, G. Dresselhaus, X. Sun, Z. Zhang, S. B. Cronin, T. Koga, J. Y. Ming, and G. Chen, "The Promise of Low-Dimensional Thermoelectric Materials", Microscale Thermophys. Eng., 3, 89 (1999). https://doi.org/10.1080/108939599199774
- H. Fateh, C. A. Baker, M. J. Hall, and L. Shi, "High Fidelity Finite Difference Model for Exploring Multi-parameter Thermoelectric Generator Design Space", Appl. Energy., 129, 373 (2014). https://doi.org/10.1016/j.apenergy.2014.04.088
- S. Kumar, S. D. Heister, X. Xu, and J. R. Salvador, "Optimization of Thermoelectric Components for Automobile Waste Heat Recovery Systems", J. Electric. Mater., 44(10), 3627 (2015). https://doi.org/10.1007/s11664-015-3912-4
- A. Z. Sahin, and B. S. Yibas, "The Thermoelement as Thermoelectric Power Generator: Effect of Leg Geometry on the Efficiency and Power Generation", Energy Convers. Manag., 65, 26 (2013). https://doi.org/10.1016/j.enconman.2012.07.020
- F. Meng, L. Chen, and F. Sun, "Effects of Thermocouples' Physical Size on the Performance of the TEG-TEH System", Inter. J. Low Carbon Technol., 11, 375 (2016). https://doi.org/10.1093/ijlct/ctt080
- J. P. Schaffer, A. Saxena, S. D. Antolovich, T. H. Sanders Jr., and S. B. Warner, "The Science and Design of Engineering Materials", Inter. Ed., 577, Irwin, Chicago (1995).
- K. J. Shin, and T. S. Oh, "Micro-power Generation Characteristics of Thermoelectric Thin Film Devices Processed by Electrodeposition and Flip-chip Bonding", J. Electron. Mater., 44(6), 2026 (2015). https://doi.org/10.1007/s11664-015-3647-2
-
R. Rostek, J. Kottmeier, M. Kratschmer, G. Blackburn, F. Goldschmidtboing, M. Kroner, and P. Woias, "Thermoelectric Characterization of Electrochemically Deposited
$Bi_2Te_3$ Films Accounting for the Presence of Conductive Seed Layers", J. Electrochem. Soc., 160, D408 (2013). https://doi.org/10.1149/2.101309jes - H. P. Nguyen, J. Su, Z. Wang, R. J. M. Vullers, P. M. Vereecken, and J. Fransaer, "Measurement of Seebeck Coefficient of Electroplated Thermoelectric Films in Presence of a Seed Layer", J. Mater. Res., 26, 1953 (2011). https://doi.org/10.1557/jmr.2011.83
-
K. J. Shin, and T. S. Oh, "Thermoelectric Power-generation Characteristics of a Thin-film Device Processed by the Flipchip Bonding of
$Bi_2Te_3$ and$Sb_2Te_3$ Thin-film Legs using an Anisotropic Conductive Adhesive", Mater. Trans., 56(10), 1719 (2015). https://doi.org/10.2320/matertrans.M2015236 -
W. Glatz, E. Schwyter, L. Durrer, and C. Hierold, "
$Bi_2Te_3$ -Based Flexible Micro Thermoelectric Generator With Optimized Design", J. Microelectromech. Syst., 18, 763 (2009). https://doi.org/10.1109/JMEMS.2009.2021104
Cited by
- PDMS 충진법을 이용하여 형성한 유연열전모듈의 발전특성과 굽힘특성 vol.26, pp.4, 2018, https://doi.org/10.6117/kmeps.2019.26.4.119
- PDMS로 충진된 신축열전모듈의 신축특성과 발전특성 vol.26, pp.4, 2018, https://doi.org/10.6117/kmeps.2019.26.4.149