DOI QR코드

DOI QR Code

브로칭 가공된 회주철 소재 표면의 마찰 및 마모 특성

Friction and Wear Characteristics of Gray Cast Iron Surface Processed by Broaching Method

  • Kwon, Mun-Seong (Deptartment of Mechanical Engineering, Yonsei University) ;
  • Kang, Kyeong-Hee (Deptartment of Mechanical Engineering, Yonsei University) ;
  • Kim, Dae-Eun (Deptartment of Mechanical Engineering, Yonsei University)
  • 투고 : 2018.09.14
  • 심사 : 2018.11.16
  • 발행 : 2018.12.31

초록

In this work the friction and wear characteristics of the gray cast iron surface processed by broaching method, which is widely used in the machinery industry, were investigated. The broaching process is mainly used for mass production because it has high dimensional accuracy and processing speed, but the defects on surface can be easily generated. In order to improve the tribological characteristics, the approach was to reduce the roughness and hardness of the surface by adding a machining process to the broaching specimen. The secondary machining process using abrasive grains produces low roughness and hardness than broaching because it has high tool accuracy and removes the work hardened surface. The friction coefficient and the wear rate were assessed using a reciprocating-type tribotester to analyze the effects of surface finishing on the tribological properties. The friction tests were conducted under dry and lubricated conditions. The test results showed that the reduction of surface roughness and hardness through secondary machining process in lubricated condition improved the friction and wear characteristics. The reason why the same results did not appear in a dry condition was that wear occurred more rapidly than in lubricated condition. Thus, the positive effect of roughness and hardness of the surface obtained through the secondary machining process was not observed.

키워드

OHHHB9_2018_v34n6_262_f0001.png 이미지

Fig. 1. Schematic of broaching processing.

OHHHB9_2018_v34n6_262_f0001.png 이미지

Fig. 1. Schematic of broaching processing.

OHHHB9_2018_v34n6_262_f0002.png 이미지

Fig. 2. Structure of rotary compressor pump.

OHHHB9_2018_v34n6_262_f0002.png 이미지

Fig. 2. Structure of rotary compressor pump.

OHHHB9_2018_v34n6_262_f0003.png 이미지

Fig. 3. Stress distribution of cylinder slot.

OHHHB9_2018_v34n6_262_f0003.png 이미지

Fig. 3. Stress distribution of cylinder slot.

OHHHB9_2018_v34n6_262_f0004.png 이미지

Fig. 4. Experimental set-up of ball-on-plate friction test.

OHHHB9_2018_v34n6_262_f0004.png 이미지

Fig. 4. Experimental set-up of ball-on-plate friction test.

OHHHB9_2018_v34n6_262_f0005.png 이미지

Fig. 5. Bearing area curve of cylinder slot surface.

OHHHB9_2018_v34n6_262_f0005.png 이미지

Fig. 5. Bearing area curve of cylinder slot surface.

OHHHB9_2018_v34n6_262_f0006.png 이미지

Fig. 6. Friction coefficient under dry condition test until.

OHHHB9_2018_v34n6_262_f0006.png 이미지

Fig. 6. Friction coefficient under dry condition test until.

OHHHB9_2018_v34n6_262_f0007.png 이미지

Fig. 7. Friction coefficient under lubrication condition.

OHHHB9_2018_v34n6_262_f0007.png 이미지

Fig. 7. Friction coefficient under lubrication condition.

OHHHB9_2018_v34n6_262_f0008.png 이미지

Fig. 8. EDS measurement result of surface component.

OHHHB9_2018_v34n6_262_f0008.png 이미지

Fig. 8. EDS measurement result of surface component.

OHHHB9_2018_v34n6_262_f0009.png 이미지

Fig. 9. Wear mechanism of oxide layer in (a) broaching, (b) grinding and lapping.

OHHHB9_2018_v34n6_262_f0009.png 이미지

Fig. 9. Wear mechanism of oxide layer in (a) broaching, (b) grinding and lapping.

OHHHB9_2018_v34n6_262_f0010.png 이미지

Fig. 10. Wear rate of specimen under lubrication and dry condition test.

OHHHB9_2018_v34n6_262_f0010.png 이미지

Fig. 10. Wear rate of specimen under lubrication and dry condition test.

OHHHB9_2018_v34n6_262_f0011.png 이미지

Fig. 11. Cross section images of wear tracks of specimen under.

OHHHB9_2018_v34n6_262_f0011.png 이미지

Fig. 11. Cross section images of wear tracks of specimen under.

OHHHB9_2018_v34n6_262_f0012.png 이미지

Fig. 12. Contact area characteristics.

OHHHB9_2018_v34n6_262_f0012.png 이미지

Fig. 12. Contact area characteristics.

Table 1. Friction test conditions

OHHHB9_2018_v34n6_262_t0001.png 이미지

Table 1. Friction test conditions

OHHHB9_2018_v34n6_262_t0001.png 이미지

Table 2. Properties of cylinder slot surface

OHHHB9_2018_v34n6_262_t0002.png 이미지

Table 2. Properties of cylinder slot surface

OHHHB9_2018_v34n6_262_t0002.png 이미지

참고문헌

  1. Sutherland, J. W., Salisbury, E. J., Hoge, F. W., "A model for the cutting force system in the gear broaching process", Int. J. Mach. Tools Manuf., Vol. 37, No. 10, pp. 1409-1421, 1997. https://doi.org/10.1016/S0890-6955(97)00014-X
  2. Jia, K., Hong, J., Fan, L., "Grinding path planning for the cutting teeth of helical broaching tool", Int. J. Mach. Tools Manuf., Vol. 89, No. 1-4, pp. 87-100, 2017.
  3. Bathe, R., Krishna, V. S., Nikumb, S. K., Padmanabham, G., "Laser surface texturing of gray cast iron for improving tribological behavior", Appl. Phys. AMater. Sci. Process, Vol. 117, No. 1, pp. 117-123, 2014. https://doi.org/10.1007/s00339-014-8281-y
  4. Ooi, K. T., "Design optimization of a rolling piston compressor for refrigerators", Appl. Therm. Eng., Vol. 25, No. 5-6, pp. 813-829, 2005. https://doi.org/10.1016/j.applthermaleng.2004.07.017
  5. De Mello, J. D. B., Binder, R., Demas, N. G., Polycarpou, A. A., "Effect of the actual environment present in hermetic compressors on the tribological behaviour of a Si-rich multifunctional DLC coating", Wear, Vol. 267, No. 5-8, pp. 907-915, 2009. https://doi.org/10.1016/j.wear.2008.12.070
  6. Hu, X., Qu, Z., Yang, X., Sun, J., "Theoretical study on frictional losses of a novel automotive swing vane compressor", Int. J. Refrig., Vol. 36, No. 3, pp. 758-767, 2013. https://doi.org/10.1016/j.ijrefrig.2012.11.001
  7. Mishra, S. P., Polycarpou, A. A., "Tribological studies of unpolished laser surface textures under starved lubrication conditions for use in air-conditioning and refrigeration compressors", Tribol. Int., Vol. 44, No. 12, pp. 1890-1901, 2011. https://doi.org/10.1016/j.triboint.2011.08.005
  8. Etsion, I., "Improving tribological performance of mechanical components by laser surface texturing", Tribol. Lett., Vol. 17, No. 4, pp. 733-737, 2004. https://doi.org/10.1007/s11249-004-8081-1
  9. Westerfield, Z., Totaro, P., Kim, D., Tian, T., "An experimental study of piston skirt roughness and profiles on piston friction using the floating liner engine", SAE Tech. Pap., doi:10.4271/2016-01-1043, 2016.
  10. Tripathi, K., Gyawali, G., Lee, S. W., "Graphene coating via chemical vapor deposition for improving friction and wear of gray cast iron at interfaces", ACS Appl. Mater. Interfaces, doi:10.1021/acsami.7b07922, 2017.
  11. Solzak, T. A., Polycarpou, A. A., "Tribology of hard protective coatings under realistic operating conditions for use in oilless piston-type and swash-plate compressors", Tribol. Trans., doi:10.1080/10402000 903283300, 2010.
  12. Riahi, A. R., Alpas, A. T., "Wear map for grey cast iron", Wear, doi:10.1016/S0043-1648(03)00100-5, 2003.
  13. Evans, C. J., Paul, E., Dornfeld, D., Lucca, D. A., Byrne, G., Tricard, M., Mullany, B. A., "Material removal mechanisms in lapping and polishing", CIRP Ann-Manuf. Technol., Vol. 52, No. 2, pp. 611-633, 2003. https://doi.org/10.1016/S0007-8506(07)60207-8
  14. Welling, D., "Results of surface integrity and fatigue study of wire-EDM compared to broaching and grinding for demanding jet engine components made of Inconel 718", Procedia CIRP., Vol. 13, pp. 339-344, 2014.
  15. Grzesik, W., Rech, J., Zak, K., "Characterization of surface textures generated on hardened steel parts in high-precision machining operations", Int. J. Adv. Manuf. Technol., Vol. 78, No. 9-12, pp. 2049-2056, 2015. https://doi.org/10.1007/s00170-015-6800-4
  16. Sedlacek, M., Podgornik, B., Vizintin, J., "Influence of surface preparation on roughness parameters, friction and wear", Wear, Vol. 266, No. 3-4, pp. 482-487, 2009. https://doi.org/10.1016/j.wear.2008.04.017
  17. Kim, H. J., Seo, K. J., Kang, K. H., Kim, D. E., "Nano-lubrication: A review", Int. J. Precis. Eng. Manuf., Vol. 17, No. 6, pp. 829-841, 2016. https://doi.org/10.1007/s12541-016-0102-0
  18. Kim, H. J., Kim, D. E., "Nano-scale friction: A review", Int. J. Precis. Eng. Manuf., Vol. 10, No. 2, pp. 141-151, 2009. https://doi.org/10.1007/s12541-009-0039-7
  19. Kim, H. J., Yoo, S. S., Kim, D. E., "Nano-scale wear: A review", Int. J. Precis. Eng. Manuf., Vol. 13, No. 9, pp. 1709-1718, 2012. https://doi.org/10.1007/s12541-012-0224-y
  20. Won, S. J., Cho, S. H., Kang, D. K., Heo, J. S., "Experimental study on wear characteristics of metallic materials used in oil sands plants", J. Korean Soc. Tribol. Lubr. Eng., Vol. 33, No. 1, pp. 31-35, 2017. https://doi.org/10.9725/kstle.2017.33.1.31
  21. Byon, S. M., "Experimental study to examine wear characteristics and determine the wear coefficient of ductile cast iron (DCI) roll", J. Korean Soc. Tribol. Lubr. Eng., Vol. 33, No. 3, pp. 98-105, 2017. https://doi.org/10.9725/kstle.2017.33.3.98