Fig. 1. Schematic of broaching processing.
Fig. 1. Schematic of broaching processing.
Fig. 2. Structure of rotary compressor pump.
Fig. 2. Structure of rotary compressor pump.
Fig. 3. Stress distribution of cylinder slot.
Fig. 3. Stress distribution of cylinder slot.
Fig. 4. Experimental set-up of ball-on-plate friction test.
Fig. 4. Experimental set-up of ball-on-plate friction test.
Fig. 5. Bearing area curve of cylinder slot surface.
Fig. 5. Bearing area curve of cylinder slot surface.
Fig. 6. Friction coefficient under dry condition test until.
Fig. 6. Friction coefficient under dry condition test until.
Fig. 7. Friction coefficient under lubrication condition.
Fig. 7. Friction coefficient under lubrication condition.
Fig. 8. EDS measurement result of surface component.
Fig. 8. EDS measurement result of surface component.
Fig. 9. Wear mechanism of oxide layer in (a) broaching, (b) grinding and lapping.
Fig. 9. Wear mechanism of oxide layer in (a) broaching, (b) grinding and lapping.
Fig. 10. Wear rate of specimen under lubrication and dry condition test.
Fig. 10. Wear rate of specimen under lubrication and dry condition test.
Fig. 11. Cross section images of wear tracks of specimen under.
Fig. 11. Cross section images of wear tracks of specimen under.
Fig. 12. Contact area characteristics.
Fig. 12. Contact area characteristics.
Table 1. Friction test conditions
Table 1. Friction test conditions
Table 2. Properties of cylinder slot surface
Table 2. Properties of cylinder slot surface
References
- Sutherland, J. W., Salisbury, E. J., Hoge, F. W., "A model for the cutting force system in the gear broaching process", Int. J. Mach. Tools Manuf., Vol. 37, No. 10, pp. 1409-1421, 1997. https://doi.org/10.1016/S0890-6955(97)00014-X
- Jia, K., Hong, J., Fan, L., "Grinding path planning for the cutting teeth of helical broaching tool", Int. J. Mach. Tools Manuf., Vol. 89, No. 1-4, pp. 87-100, 2017.
- Bathe, R., Krishna, V. S., Nikumb, S. K., Padmanabham, G., "Laser surface texturing of gray cast iron for improving tribological behavior", Appl. Phys. AMater. Sci. Process, Vol. 117, No. 1, pp. 117-123, 2014. https://doi.org/10.1007/s00339-014-8281-y
- Ooi, K. T., "Design optimization of a rolling piston compressor for refrigerators", Appl. Therm. Eng., Vol. 25, No. 5-6, pp. 813-829, 2005. https://doi.org/10.1016/j.applthermaleng.2004.07.017
- De Mello, J. D. B., Binder, R., Demas, N. G., Polycarpou, A. A., "Effect of the actual environment present in hermetic compressors on the tribological behaviour of a Si-rich multifunctional DLC coating", Wear, Vol. 267, No. 5-8, pp. 907-915, 2009. https://doi.org/10.1016/j.wear.2008.12.070
- Hu, X., Qu, Z., Yang, X., Sun, J., "Theoretical study on frictional losses of a novel automotive swing vane compressor", Int. J. Refrig., Vol. 36, No. 3, pp. 758-767, 2013. https://doi.org/10.1016/j.ijrefrig.2012.11.001
- Mishra, S. P., Polycarpou, A. A., "Tribological studies of unpolished laser surface textures under starved lubrication conditions for use in air-conditioning and refrigeration compressors", Tribol. Int., Vol. 44, No. 12, pp. 1890-1901, 2011. https://doi.org/10.1016/j.triboint.2011.08.005
- Etsion, I., "Improving tribological performance of mechanical components by laser surface texturing", Tribol. Lett., Vol. 17, No. 4, pp. 733-737, 2004. https://doi.org/10.1007/s11249-004-8081-1
- Westerfield, Z., Totaro, P., Kim, D., Tian, T., "An experimental study of piston skirt roughness and profiles on piston friction using the floating liner engine", SAE Tech. Pap., doi:10.4271/2016-01-1043, 2016.
- Tripathi, K., Gyawali, G., Lee, S. W., "Graphene coating via chemical vapor deposition for improving friction and wear of gray cast iron at interfaces", ACS Appl. Mater. Interfaces, doi:10.1021/acsami.7b07922, 2017.
- Solzak, T. A., Polycarpou, A. A., "Tribology of hard protective coatings under realistic operating conditions for use in oilless piston-type and swash-plate compressors", Tribol. Trans., doi:10.1080/10402000 903283300, 2010.
- Riahi, A. R., Alpas, A. T., "Wear map for grey cast iron", Wear, doi:10.1016/S0043-1648(03)00100-5, 2003.
- Evans, C. J., Paul, E., Dornfeld, D., Lucca, D. A., Byrne, G., Tricard, M., Mullany, B. A., "Material removal mechanisms in lapping and polishing", CIRP Ann-Manuf. Technol., Vol. 52, No. 2, pp. 611-633, 2003. https://doi.org/10.1016/S0007-8506(07)60207-8
- Welling, D., "Results of surface integrity and fatigue study of wire-EDM compared to broaching and grinding for demanding jet engine components made of Inconel 718", Procedia CIRP., Vol. 13, pp. 339-344, 2014.
- Grzesik, W., Rech, J., Zak, K., "Characterization of surface textures generated on hardened steel parts in high-precision machining operations", Int. J. Adv. Manuf. Technol., Vol. 78, No. 9-12, pp. 2049-2056, 2015. https://doi.org/10.1007/s00170-015-6800-4
- Sedlacek, M., Podgornik, B., Vizintin, J., "Influence of surface preparation on roughness parameters, friction and wear", Wear, Vol. 266, No. 3-4, pp. 482-487, 2009. https://doi.org/10.1016/j.wear.2008.04.017
- Kim, H. J., Seo, K. J., Kang, K. H., Kim, D. E., "Nano-lubrication: A review", Int. J. Precis. Eng. Manuf., Vol. 17, No. 6, pp. 829-841, 2016. https://doi.org/10.1007/s12541-016-0102-0
- Kim, H. J., Kim, D. E., "Nano-scale friction: A review", Int. J. Precis. Eng. Manuf., Vol. 10, No. 2, pp. 141-151, 2009. https://doi.org/10.1007/s12541-009-0039-7
- Kim, H. J., Yoo, S. S., Kim, D. E., "Nano-scale wear: A review", Int. J. Precis. Eng. Manuf., Vol. 13, No. 9, pp. 1709-1718, 2012. https://doi.org/10.1007/s12541-012-0224-y
- Won, S. J., Cho, S. H., Kang, D. K., Heo, J. S., "Experimental study on wear characteristics of metallic materials used in oil sands plants", J. Korean Soc. Tribol. Lubr. Eng., Vol. 33, No. 1, pp. 31-35, 2017. https://doi.org/10.9725/kstle.2017.33.1.31
- Byon, S. M., "Experimental study to examine wear characteristics and determine the wear coefficient of ductile cast iron (DCI) roll", J. Korean Soc. Tribol. Lubr. Eng., Vol. 33, No. 3, pp. 98-105, 2017. https://doi.org/10.9725/kstle.2017.33.3.98