DOI QR코드

DOI QR Code

Evaluation of Granite Melting Technique for Deep Borehole Sealing

심부시추공 밀봉을 위한 화강암 용융거동 평가

  • Received : 2018.03.09
  • Accepted : 2018.09.04
  • Published : 2018.12.31

Abstract

The granite melting concept, which was suggested by Gibb's group for the closing of a deep borehole, was experimentally checked for KURT granite. The granite melting experiments were performed in two pressure conditions of atmospheric melting with certain inorganic additives and high pressure melting formed by water vaporization. The results of atmospheric tests showed that KURT granite started to melt at a lower temperature of $1,000^{\circ}C$ with NaOH addition and that needle shaped crystals were formed around partially melted crystals. In high pressure tests, vapor pressure was increased by adding water with maximum pressure of about 400 bars. KURT granite was partially melted at $1,000^{\circ}C$ when vapor pressure was low. However, it was not melted at vapor pressures higher than 200 bars. Therefore, it was determined that high pressure with a small amount of water vapor more effectively decreased the melting point of granite. Meanwhile, high temperature and high pressure vapor caused severe corrosion of the reactor wall.

본 연구에서는 심부시추공 처분을 위한 밀봉시스템으로서 Gibb's Group에 의해 제안된 화강암 용융 및 재결정화에 의한 시추공 밀봉 방안에 대해 KURT 화강암을 대상으로 실현 가능성을 확인하였다. 화강암 용융 실험은 첨가제를 이용한 상압 용융시험과 물의 기화에 의한 수증기 고압용융시험 2가지로 수행되었다. 상압 용융시험 결과, KURT 화강암 분말에 NaOH를 첨가하여도 기본 융점보다 낮은 $1,000^{\circ}C$에서 부분용융이 시작되었으며, 냉각된 용융물에서 침상결정의 형성을 확인하였다. 수증기 고압시험은 물의 첨가량에 따라 수증기압을 달리하며 최대 400 bar의 수증기압까지 용융 시험이 진행되었다. KURT 화강암은 낮은 수증기압에도 $1,000^{\circ}C$에서 부분 용융이 시작되었으나, 물이 많이 첨가된 높은 수증기압에서 화강암의 부분 용융은 보이지 않았다. 따라서 소량의 수증기가 있는 고압상태가 화강암의 용융에 적합한 것으로 판단되었다. 한편, 고온고압의 수증기는 내부식성의 반응기 벽을 부식시켜, 고온의 수증기에 의한 처분용기의 부식 문제가 발생되었다.

Keywords

References

  1. G. Hultquist, "Hydrogen evolution in corrosion of copper in pure water", Corrosion Science, 26(2), 173-177 (1986). https://doi.org/10.1016/0010-938X(86)90044-2
  2. G. Hultquist, M.J. Graham, P. Szakalos, G.I. Sproule, A. Rosengren, and L. Grasjo, "Hydrogen gas production during corrosion of copper by water", Corrosion Science, 53(1), 310-319 (2011). https://doi.org/10.1016/j.corsci.2010.09.037
  3. R. Haugsrud, "The Influence of Water Vapor on the Oxidation of Copper at Intermediate Temperatures", Journal of The Electrochemical Society, 149(1), B14-B21 (2002). https://doi.org/10.1149/1.1427076
  4. P. Szakalos and O. Grinder, "Thermodynamics and kinetics of copper corrosion in oxygen free water", Workshop on Mechanisms of Copper Corrosion in Aqueous Environments, Stockholm, 16 November 2009.
  5. B. Kursten, E. Smailos, I. Azkarate, L. Werme, N.R. Smart, and G. Santarini, State-of-the-art document on the Corrosion Behaviour of Container Materials, European Commission 5th Euratom Framework Programnne 1998-2002 Final Report, Contract $N^{\circ}$ FIKWCT- 20014-20138 (2002).
  6. Nuclear Industry Radioactive Waste Executive, A Review of the Deep Borehole Disposal Concept for Radioactive Waste, Nirex report no.N/108, Oxfordshire, UK (2004).
  7. P.V. Brady, B.W. Arnold, and P. N. Swift, Deep Borehole Disposal of High-Level Radioactive Waste, SAND2009-4401, SNL, Albuquerque, NM (2009).
  8. K.S. Kim, State-of-the-Art Report on the Very Deep Borehole Disposal Concept for High-level Radioactive Waste, Korea Atomic Energy Research Institute Report, KAERI/AR-929/2012 (2012).
  9. S.H. Yun and C.R. Kim, "Deep Borehole Disposal Concept of Spent Fuel for Implementation in Korea", J. Nucl. Fuel Cycle Waste Technol., 11(4), 303-309 (2013). https://doi.org/10.7733/jnfcwt-k.2013.11.4.303
  10. T. Hadgu, B. Arnold, J. Lee, G. Freeze, P. Vaughn, P. Swift, and C. Sallaberry, Sensitivity Analysis of Seals Permeability and Performance Assessment of Deep Borehole Disposal of Radioactive Waste, PSAM 11 & ESREL 2012, Helsinki, Finland, 24-29 June, SAND2012-1118C (2012).
  11. F.G.F. Gibb, K.J. Taylor, and B.E. Burakov, "The 'granite encapsulation' route to the safe disposal of Pu and other actinide", Journal of Nuclear Materials, 374(3), 364-369 (2008). https://doi.org/10.1016/j.jnucmat.2007.08.018
  12. B. Arnold and P. Brady, Geological and Practical Aspects of Deep Borehole Disposal, Nuclear Waste Technical Review Board Spring Meeting, Albuquerque, New Mexico, SAND2012-1383C, 7 March 2012.
  13. B.W. Arnold, P.V. Brady, S.J. Bauer, C. Herrick, S. Pye, and J. Finger, Reference Design and Operations for Deep Borehole Disposal of High-Level Radioactive Waste, SANDIA REPORT, SAND2011-6749 (2011).
  14. F.G.F. Gibb, K.P. Travis, N.A. McTaggart, and D. Burley, "A model for heat flow in deep borehole disposals of high-level nuclear waste", Journal of Geophysical Research, 113, B05201 (2008).
  15. P.G. Attrill and F.G.F. Gibb, "Partial melting and recrystallization of granite and their application to deep disposal of radioactive waste Part 1-Rationale and partial melting", Lithos, 67(1-2), 103-117 (2003). https://doi.org/10.1016/S0024-4937(02)00254-2
  16. S.E. Logan, "Deeper geologic disposal: a new look at self-burial", Proc. WM'99 Conference. Tucson, Arizona (1999).
  17. J.B. Murphy, "Igneous Rock Associations 7. Arc magmatism I: relationship between subduction and magma genesis", Geoscience Canada, 33(4), 145-167 (2006)
  18. P.G. Attrill and F.G.F. Gibb, "Partial melting and recrystallization of granite and their application to deep disposal of radioactive waste Part 2-Recrystallization", Lithos, 67(1-2), 119-133 (2003). https://doi.org/10.1016/S0024-4937(02)00255-4
  19. N. Chapman, Deep Borehole Disposal of Spent Fuel and Other Radioactive Wastes, NAPSNet Special Reports, 25 July 2013.
  20. F.G.F. Gibb, K.P. Travis, N.A. McTaggart, D. Burley, and K.W. Hesketh., "Modelling temperature distribution around very deep borehole disposals of HLW", Nuclear Technology, 163(1), 62-73 (2008). https://doi.org/10.13182/NT08-A3970
  21. J.A. Dalton and F.G.F. Gibb, "Temperature Gradients in Large Cold-Seal Pressure Vessels", Mineralogical Magazine, 60(2), 337-345 (2016).
  22. L.M. Spasova and M.I. Ojovan, "Characterisation of Al corrosion and its impact on the mechanical performance of composite cement wasteforms by the acoustic emission technique", Journal of Nuclear Materials, 375(3), 347-358 (2008). https://doi.org/10.1016/j.jnucmat.2007.11.010
  23. L.M. Spasova, M.I. Ojovan, and F.G.F. Gibb, "Acoustic Emission Testing and Analysis Applied for Materials Used for Immobilisation of Nuclear Wastes", IAEA CRP on Cementitious Materials. Bucharest, 11, 24-28 (2008).
  24. L.M. Spasova, M.I. Ojovan, and F.G.F. Gibb, "Acoustic emission on melting/solidification of natural granite simulating very deep waste disposal", Nuclear Engineering and Design, 248, 329- 339 (2012). https://doi.org/10.1016/j.nucengdes.2012.03.024
  25. W.J. Cho, S.K. Kwon, and J.O. Lee, Thermal Properties of Granite from KAERI Underground Research Tunnel (KURT), Korea Atomic Energy Research Institute Report, KAERI/TR-4148/2010 (2010).
  26. HAYNES international, "high-temperature Tech brief, HAYNES${(R)}$ 230${(R)}$ Alloy", Accessed Dec. 12. 2017. Available from: http://www.haynesintl.com.
  27. E.S. Larsen, "The temperature of magmas", American Mineralogist, 14, 81-94 (1929).
  28. I. Pioro and S. Mokry, "Thermophysical Properties at Critical and Supercritical Pressures, Heat Transfer", in: Theoretical Analysis, Experimental Investigations and Industrial Systems, Prof. Aziz Belmiloudi, eds., ISBN: 978-953-307-226-5 (2011).