DOI QR코드

DOI QR Code

Effect of [Al(DMSO2)3]3+ Concentration on Al Electrodeposition from AlCl3/Dimethylsulfone Baths

  • Kim, Sangjae (Department of Materials Science & Engineering, Graduate School of Engineering, Nagoya University) ;
  • Matsunaga, Naoya (Department of Materials Science & Engineering, Graduate School of Engineering, Nagoya University) ;
  • Kuroda, Kensuke (Institute of Materials and Systems for Sustainability, IMaSS, Nagoya University) ;
  • Okido, Masazumi (Institute of Materials and Systems for Sustainability, IMaSS, Nagoya University)
  • Received : 2017.12.27
  • Accepted : 2018.03.07
  • Published : 2018.03.31

Abstract

Aluminum electrodeposition was carried out in dimethylsulfone ($DMSO_2$) baths containing 6.2-28.3 mol% $AlCl_3$ at 403 K. The electrochemically active species for Al electrodeposition in $DMSO_2$ baths were investigated. Electrochemical behavior of the electrolyte and the deposition mechanism were studied via cyclic voltammetry (CV). Properties of the deposits were assessed by scanning electron microscopy with energy-dispersive X-ray spectroscopy and X-ray diffraction. In addition, structures of the ionic complexes formed with aluminum in the bath were characterized by $^{27}Al$ nuclear magnetic resonance (NMR) spectroscopy. NMR spectra revealed that all baths contained two ionic species: $AlCl_4{^-}$ and $[Al(DMSO_2)_3]^{3+}$. Al electrodeposited when the $[Al(DMSO_2)_3]^{3+}$ concentration was the highest (23.3 mol% $AlCl_3$) exhibited fine grain sizes, relatively smooth surfaces, and high purities.

Keywords

References

  1. A. R. Brukin, Production of Aluminium and Alumina, Critical Reports in Applied Chemistry, Vol. 20, John Wiley, 1987.
  2. W. Deqing, S. Ziyuan, Z. Longjiang, Appl. Surf. Sci., 2003, 214(1-4), 304-311. https://doi.org/10.1016/S0169-4332(03)00505-1
  3. Y. Liu, L. J. Overzet, M. J. Goeckner, Thin Solid Films, 2006, 510(1-2), 48-54. https://doi.org/10.1016/j.tsf.2005.12.156
  4. C. Charrier, P. Jacquot, E. Denisse, J. P. Millet, H. Mazille, Surf. Coat Technol., 1997, 90(1-2), 29-34. https://doi.org/10.1016/S0257-8972(96)03080-0
  5. M. Campo, M. Carboneras, M. D. Lopez, B. Torres, P. Rodrigo, E. Otero, J. Rams, Surf. Coat Technol., 2009, 203(20-21), 3224-3230. https://doi.org/10.1016/j.surfcoat.2009.03.057
  6. R. S. C. Paredes, S. C. Amico, A. S. C. M. d'Oliveira, Surf. Coat Technol., 2006, 200(9), 3049-3055. https://doi.org/10.1016/j.surfcoat.2005.02.200
  7. M. Galova, Surf. Technol., 1980, 11(5), 357-369. https://doi.org/10.1016/0376-4583(80)90053-9
  8. Y. Zhao, T. J. VanderNoot, Electrochim. Acta, 1997, 42(11), 1639-1643. https://doi.org/10.1016/S0013-4686(96)00271-X
  9. H. Lehmkuhl, K. Mehler, U. Landau, The Principles and Techniques of Electrolytic Aluminum Deposition and Dissolution in Organoaluminum Electrolytes. In:Gerischer H, Tobias CW (Eds.) Advances in Electrochemical Science and Engineering, Vol 3, VCH Verlagsgesellschaft, Weinheim, 1990.
  10. W. Simka, D. Puszczyk, G. Nawrat, Electrochim. Acta, 2009, 54(23), 5307-5319. https://doi.org/10.1016/j.electacta.2009.04.028
  11. S. Z. El Abedin, E. M. Moustafa, R. Hempelmann, H. Natter, F. Endres, Electrochem. Comm., 2005, 7(11), 1111-1116. https://doi.org/10.1016/j.elecom.2005.08.010
  12. J. K. Chang, S. Y. Chen, W. T. Tsai, M. J. Deng, I. W. Sun, Electrochem. Comm., 2007, 9(7), 1602-1606. https://doi.org/10.1016/j.elecom.2007.03.009
  13. F. Endres, A. P. Abbott, D. R. MacFarlane, Electrodeposition from Ionic Liquids. Wiley-VCH, Weinheim, 2008.
  14. L. Barchi, U. Bardi, S. Caporali, M. Fantini, A. Scrivani, A. Scrivani, Prog. Org. Coat, 2010, 67(2), 146-151. https://doi.org/10.1016/j.porgcoat.2009.10.017
  15. A. P. Abbott, F. Qiu, H. Abood, M. Ali, K. Ryder, Phys. Chem. Chem. Phys., 2010, 12(8), 1862-1872. https://doi.org/10.1039/B917351J
  16. S. Takahashi, K. Akimoto, I. Saeki, J. Surf. Finish Soc. Jpn., 1989, 40, 134-135.
  17. A. P. Abbott, C. A. Eardley, N. R. S. Farley, G. A. Griffith, A. Pratt, J. Appl. Electrochem., 2001, 31(12), 1345-1350. https://doi.org/10.1023/A:1013800721923
  18. Q. Liao, W. R. Pitner, G. Stewart, C. L. Hussey, G. R. Stafford, J. Electrochem. Soc., 1997, 144(3), 936-943. https://doi.org/10.1149/1.1837510
  19. F. H. Hurley, T. P. Wier, J. Electrochem. Soc., 1951, 98(5), 207-212. https://doi.org/10.1149/1.2778133
  20. T. Hirato, J. Fransaer, J.-P. Celis, J. Electrochem. Soc., 2001, 148(4), C280-C283. https://doi.org/10.1149/1.1354616
  21. S. Shiomi, M. Miyake, T. Hirato, A. Sato, Mater. Trans., 2011, 52(6), 1216-1221. https://doi.org/10.2320/matertrans.M2010421
  22. M. Miyake, S. Tajikara, T. Hirato, High Temp. Mater. Processes, 2011, 30(4-5), 485-489.
  23. M. Miyake, S. Tajikara, T. Hirato, Surf. Coat Tech., 2011, 205(21-22), 5141-5146.
  24. T. Jiang, M. J. C. Brym, G. Dube, A. Lasia, G. M. Brisard, Surf. Coat Tech., 2007, 201(14), 6309-6317. https://doi.org/10.1016/j.surfcoat.2006.11.035
  25. L. Legrand, A. Tranchant, R. Messina, J. Electrochem. Soc., 1994, 141(2), 378-382. https://doi.org/10.1149/1.2054735
  26. L. Legrand, A. Tranchant, R. Messina, F. Romain, A. Lautie, Inorg. Chem., 1996, 35(5), 1310-1312. https://doi.org/10.1021/ic941455q
  27. M. Miyake, H. Motonami, T. Hirato, ISIJ Int., 2012, 52(12), 2273-2277. https://doi.org/10.2355/isijinternational.52.2273
  28. S. Shiomi, M. Miyake, T. Hirato, J. Electrochem. Soc., 2012, 159(4), D225-D229. https://doi.org/10.1149/2.079204jes
  29. L. Legrand, M. Heintz, A. Tranchant, R. Messina, Electrochim. Acta, 1995, 40(11), 1711-1716. https://doi.org/10.1016/0013-4686(95)00019-B
  30. Gaylord Chemical Company, L.L.C, Dimethyl Sulfone($DMSO_2$) Physical Properties, 2007.
  31. J. P. Pereira-Ramos, R. Messina, J. Perichon, J. Electroanal. Chem., 1986, 209(2), 283-296. https://doi.org/10.1016/0022-0728(86)80554-X
  32. L. Legrand, A. Tranchant, R. Messina, Electrochim. Acta, 1996, 41(17), 2715-2720. https://doi.org/10.1016/0013-4686(96)00126-0
  33. J. P. Cornard, J. C. Merlin, J. Inorg. Biochem., 2002, 92(1), 19-27. https://doi.org/10.1016/S0162-0134(02)00469-5
  34. A. Endo, M. Miyake, T. Hirato, Electrochim. Acta, 2014, 137, 470-475. https://doi.org/10.1016/j.electacta.2014.06.044
  35. J. F. Hinton and R. W. Briggs, NMR and the Periodic Table, R. K. Harris and B. E. Mann, Eds., Academic Press, 1978.
  36. J. W. Akitt, Annu. Rep. NMR Spectrosc., 1972, 5, 465-556.
  37. J. J. Dechter, Prog. Inorg. Chem., 1982, 29, 285-385.
  38. N. A. Pangarov, J. Electroanal. Chem., 1965, 9(1), 70-85. https://doi.org/10.1016/0022-0728(65)80066-3
  39. M. Miyake, H. Motonami, S. Shiomi, T. Hirato, Surf. Coat. Technol., 2012, 206(19-20), 4225-4229. https://doi.org/10.1016/j.surfcoat.2012.04.027
  40. B. J. Lindberg, K. Hamrin, G. Johansson, U. Gelius, A. Fahlmann, C. Nordling, K. Siegbahn, Phys. Scr., 1970, 1(5-6), 286. https://doi.org/10.1088/0031-8949/1/5-6/020
  41. J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, 1995.
  42. V. G. Bhide, S. Salkalachen, A. C. Rastogi, C. N. R. Rao, M. S. Hegde, J. Phys. D: Appl. Phys., 1981, 14(9), 1647. https://doi.org/10.1088/0022-3727/14/9/012
  43. B. R. Strohmeier, D. M. Hercules, J. Catal., 1984, 86(2), 266-279. https://doi.org/10.1016/0021-9517(84)90372-5