DOI QR코드

DOI QR Code

Effect of Synthesis Temperature on the Composition of Electrolytic Iron Phosphide

  • Kim, Hokon (School of Materials Science and Engineering, Pusan National University) ;
  • Shin, Heon-Cheol (School of Materials Science and Engineering, Pusan National University)
  • Received : 2018.01.09
  • Accepted : 2018.03.16
  • Published : 2018.03.31

Abstract

In this study, we investigated the composition of an electrolytic Fe phosphide at different synthesis temperatures. We found that the ratio of Fe in the electrodeposit increases with synthesis temperature, whereas the oxygen content introduced into the electrodeposit by the atmospheric oxidation of Fe decreases. The aim of this study was to identify the reason for this effect. For this purpose, the ratio of Fe and P in the electrodeposits prepared at different temperatures was analyzed in depth. In addition, the types and ratios of Fe phosphide phases were considered. It was proved that with increase in temperature, a significant amount of Fe reacted with P to form Fe phosphide phases, and consequently, the amount of residual pure Fe that would react directly with oxygen decreased.

Keywords

References

  1. Y. Lu, J.K. Liu, X.Y. Liu, S. Huang, T.Q. Wang, X.L. Wang, C.D. Gu, J.P. Tu, S.X. Mao, CrystEngComm., 2013, 15(35), 7071-7079. https://doi.org/10.1039/c3ce41214h
  2. K. Aso, A. Hayashi, M. Tatsumisago, Inorg. Chem., 2011, 50(21), 10820-10824. https://doi.org/10.1021/ic2013733
  3. J. Yang, Y. Zhang, C. Sun, H. Liu, L. Li, W. Si, W. Huang, Q. Yan, X. Dong, Nano Res., 2016, 9(3), 612-621. https://doi.org/10.1007/s12274-015-0941-5
  4. H. Yang, Y. Zhang, F. Hu, Q. Wang, Nano Lett., 2015, 15(11), 7616-7620. https://doi.org/10.1021/acs.nanolett.5b03446
  5. Y. Y. Dou, G. R. Li, J. Song and X. P. Gao, Phys. Chem. Chem. Phys., 2012, 14(4), 1339-1342. https://doi.org/10.1039/C2CP23775J
  6. F. Dubecky, P. Bohacek, B. Zatko, M. Sekacova, J. Huran, V. Smatko, R. Fornari, E. Gombia, R. Mosca, P.G. Pelfer, Nucl. Instrum. Methods Phys. Res., Sect. A, 2004, 531(1), 181-191. https://doi.org/10.1016/j.nima.2004.06.107
  7. M. Palaniappa, S.K. Seshadri, Wear, 2008, 265(5), 735-740. https://doi.org/10.1016/j.wear.2008.01.002
  8. W. Li, H. Li, Z. Lu, L. Gan, L. Ke, T. Zhai, H. Zhou, Energy Environ. Sci., 2015, 8(12), 3629-3636. https://doi.org/10.1039/C5EE02524A
  9. H. Pfeiffer, F. Tancret, T. Brousse, Electrochim. Acta, 2005, 50(24), 4763-4770. https://doi.org/10.1016/j.electacta.2005.02.024
  10. K. Yan, Y. Li, X. Zhang, X. Yang, N. Zhang, J. Zheng, B. Chen, K. J. Smith, Int. J. Hydrogen Energy, 2015, 40(46), 16137-16146. https://doi.org/10.1016/j.ijhydene.2015.09.145
  11. A. P. Leitner, D. E. Schipper, J. H. Chen, A. C. Colson, I. Rusakova, B. K. Rai, E. Morosan, K. H. Whitmire, Chem. Eur. J., 2017, 23(23), 5565-5572. https://doi.org/10.1002/chem.201700203
  12. T. R. Hellstern, J. D. Benck, J. Kibsgaard, C. Hahn, T. F. Jaramillo, Adv. Energy Mater., 2016, 6, 1501758. https://doi.org/10.1002/aenm.201501758
  13. M. D. Hossain, C. M. Mustafa, M. M. Islam, J. Electrochem. Sci. Technol., 2017, 8(3), 197-205. https://doi.org/10.5229/JECST.2017.8.3.197
  14. I. T. Park, H. C. Shin, Electrochem. Commun., 2013, 33, 102-106. https://doi.org/10.1016/j.elecom.2013.05.005
  15. S. Baken, P. Salaets, N. Desmet, P. Seuntjens, E. Vanlierde, E. Smolders, Environ. Sci. Technol., 2015, 49(5), 2886-2894. https://doi.org/10.1021/es505834y
  16. T. D. Mayer, W. M. Jarrell, Wat. Res., 2000, 34(16), 3949-3956. https://doi.org/10.1016/S0043-1354(00)00158-5
  17. S. J. Hearne, J. A. Floro, J. Appl. Phys., 2005, 97(1), 014901. https://doi.org/10.1063/1.1819972
  18. W. Temesghen, P. Sherwood, Anal. Bioanal. Chem., 2002, 373(7), 601-608. https://doi.org/10.1007/s00216-002-1362-3
  19. H. Liu, D. Xu, A. Q. Dao, G. Zhang, Y. Lv, H. Liu, Corros. Sci., 2015, 101, 84-93. https://doi.org/10.1016/j.corsci.2015.09.004
  20. Y. Wang, L. Zhang, H. Li, Y. Wang, L. Jiao, H. Yuan, L. Chen, H. Tang, X. Yang, J. Power Sources, 2014, 253, 360-365. https://doi.org/10.1016/j.jpowsour.2013.12.056
  21. J. Kibsgaard, C. Tsai, K. Chan, J. D. Benck, J. K. Norskov, F. Abild-Pedersen, T. F. Jaramillo, Energy Environ. Sci., 2015, 8(10), 3022-3029. https://doi.org/10.1039/C5EE02179K
  22. M. J. Carmezim, A. M. Simoes, M. F. Montemor, M. D. C. Belo, Corros. Sci., 2005, 47(3), 581-591. https://doi.org/10.1016/j.corsci.2004.07.002
  23. F. G. Ferris, K. Tazaki, W. S. Fyfe, Chem. Geol., 1989, 74(3-4), 321-330. https://doi.org/10.1016/0009-2541(89)90041-7
  24. R. S. Dutta, G. K. Dey, A. Lobo, R. Purandare, S. K. Kulkarni, Metall. Mater. Trans. A, 2002, 33(5), 1437-1447. https://doi.org/10.1007/s11661-002-0067-8
  25. N. Luo, T. Chen, K. Liu, Y. Shen, Mendeleev Commun., 2013, 23(3), 153-154. https://doi.org/10.1016/j.mencom.2013.05.011
  26. V. Balouria, A. Kumar, S. Samanta, A. Singh, A. K. Debnath, A. Mahajan, R. K. Bedi, D. K. Aswal, S. K. Gupta, Sens. Actuators, B, 2013, 181, 471-478. https://doi.org/10.1016/j.snb.2013.02.013