DOI QR코드

DOI QR Code

Determination of Correlation between Cetane Number, Derived Cetane Number and Cetane Index for Diesel Fuel

경유연료의 세탄가, 유도세탄가 및 세탄지수의 상관관계 분석

  • Jeon, Hwayeon (Research Institute of Petroleum Technology, Korea Petroleum Quality & Distribution Authority) ;
  • Kim, Ji Yeon (Research Institute of Petroleum Technology, Korea Petroleum Quality & Distribution Authority) ;
  • Kim, Shin (Research Institute of Petroleum Technology, Korea Petroleum Quality & Distribution Authority) ;
  • Yim, Eui Soon (Research Institute of Petroleum Technology, Korea Petroleum Quality & Distribution Authority)
  • 전화연 (한국석유관리원 석유기술연구소) ;
  • 김지연 (한국석유관리원 석유기술연구소) ;
  • 김신 (한국석유관리원 석유기술연구소) ;
  • 임의순 (한국석유관리원 석유기술연구소)
  • Received : 2018.11.08
  • Accepted : 2018.12.17
  • Published : 2018.12.31

Abstract

Cetane Number is one of the quality standard for diesel, which assesses the compatibility of ignition quality of diesel compression in diesel engines. Cetane number must be upper 52 to keep the recent diesel quality standards. It is known that if cetane number is high, there will be shorter ignition delay periods than being lower. On the other hands, if cetane number is too high that exceeds the quality standard, there will increase the air pollution and decrease of the fuel efficiency because incomplete combustion. In South Korea, various methods are being used to measure the cetane number such as cetane number that used CFR engine, cetane index from calculate density and distillation temperature and derived cetane number to make up for CFR engine that ignition delay in high temperature is implemented. In this study will be conducted by collecting the diesel from the major oil companies, and try to analyze the correlation between the different methods of cetane number with various factors. At the results of this study, it was shown that the cetane index is high then cetane engine and derived cetane number. therefore it will be necessary to additional research for out of cetane number quality standards.

세탄가는 경유의 품질기준 중 하나로써 디젤엔진에 사용되는 경유 연료의 착화성을 평가하는 항목이다. 세탄가 기준은 현재 자동차용 경유 기준으로 52 이상이며, 일반적으로 세탄가가 높으면 시동성이 좋고 운전이 원활해지나 지나치게 높으면 연소가 불균일해져 매연의 원인이 되고 연료소비량이 증가한다. 현재 국내의 품질시험방법에 규정되어있는 세탄가 측정방법은 CFR엔진을 이용한 세탄가분석, 경유의 밀도와 증류유출온도를 통하여 세탄가를 산출하는 세탄지수, CFR엔진의 단점을 보완하여 고온에서 연료의 연소되는 시간을 통해 세탄가를 측정하는 유도세탄가 등이 있다. 본 연구는 이러한 세탄가를 정유사별, 하 동절기별 시료를 확보하고 이를 분석하여 다양한 인자들에 의한 세탄가 측정방법의 상관관계에 대하여 분석하였다. 이를 통하여 세탄가, 유도세탄가, 세탄지수 순으로 세탄가가 높게 측정 되는 것을 확인하였고, 이를 통하여, 현재 편의성을 이유로 많이 사용되는 세탄지수로 인하여 세탄가 품질미달이 발생할 수 있기 때문에 이에 대한 추가 연구가 필요할 것으로 보인다.

Keywords

HGOHBI_2018_v35n4_1134_f0001.png 이미지

Fig. 1. CFR engine of Waukesha.

HGOHBI_2018_v35n4_1134_f0002.png 이미지

Fig. 2. IQT LM of SETA.

HGOHBI_2018_v35n4_1134_f0003.png 이미지

Fig. 3. Electronic signal that activates the common rail injector solenoid and the electronic signal produced by the dynamic pressure sensor during a combustion cycle.

HGOHBI_2018_v35n4_1134_f0004.png 이미지

Fig. 4. Correlation between Cetane number, DCN(D6890), DCN(D7668) and CI for each oil corp.

HGOHBI_2018_v35n4_1134_f0005.png 이미지

Fig. 5. Correlation Fatty Acid Methyl Ester mixed samples each oil corp and difference between CN and CI.

HGOHBI_2018_v35n4_1134_f0006.png 이미지

Fig. 6. Test results of reproducibility(CN and D6890) range with CI for each oil corp.

HGOHBI_2018_v35n4_1134_f0007.png 이미지

Fig. 7. Test results of reproducibility(CN and D7668) range with CI for each oil corp.

Table 1. General CFR engine characteristics and information

HGOHBI_2018_v35n4_1134_t0001.png 이미지

Table 2. Specification of SETA IQT LM

HGOHBI_2018_v35n4_1134_t0002.png 이미지

Table 3. Diesel fuels properties for calculate cetane index

HGOHBI_2018_v35n4_1134_t0003.png 이미지

Table 4. Analysis of DCN, CI, by secondary reference Fuels

HGOHBI_2018_v35n4_1134_t0004.png 이미지

Table 5. Analysis of catane number, DCN and CI for each oil corp

HGOHBI_2018_v35n4_1134_t0005.png 이미지

Table 6. Test results of CI and T10, T50, T90 and density for each oil corp

HGOHBI_2018_v35n4_1134_t0006.png 이미지

References

  1. Petronet, Korea Supply & Demand, Spend by Product, http://www.petronet.co.kr, (accessed, Oct., 2018).
  2. Ministry of Land, Infrastructure and Transport, Total Registered Moter Vehicles, http://stat.molit.go.kr, (accessed, Oct., 2018).
  3. P, Ghosh. "Predicting the Effect of Cetane Improvers on Diesel Fuels", Energy. Fuels, Vol. 22, No. 3, pp. 1073-1079, (2008). https://doi.org/10.1021/ef0701079
  4. G. J. Suppes, Y. Rui, A. C. Rome, and Z. Chen, "Cetane-Improver Analysis and Impact of Activation Energy on the Relative Performance of 2-Ethylhexyl Nitrate and Tetraethylene Glycol Dinitrate", Department of Chemical and Petroleum Engineering, Vol. 36, pp. 397-4404, (1997).
  5. Y. Deng, M. Zhu, D. Xiang, and X. Cheng, "An Analysis for Effect of Cetane Number on Exhaust Emissions from Engine with the Neural Network", Fuel, Vol. 81, pp. 1963-1970, (2002). https://doi.org/10.1016/S0016-2361(02)00112-6
  6. Lim, Y. K, Park, S. R, Kim, J. R, YIM, E. S, Jung C. S, "The Study of Correlation between Biodiesel Components and Derived Cetane Number", Korean Society of Automotive Engineers, Vol. 19, No. 3, pp. 122-129, (2011).
  7. ASTM D613, "Standard Test Method for Cetane Number of Diesel Fuel Oil", ASTM International, PA, (2016).
  8. Lim, Y. K, KIM. J. R, Jung. C. S, YIM. E. S, and KIM. D. K. "Determination of the Cetane Number, Derived Cetane Number and Cetane Index for Diesel Fuel by Additives" Korean Journal of Chemical Engineering, Vol. 48, No. 3, pp. 375-381, (2010).
  9. Kang, I. J. and Jeong, C. S., "Correlation Between Domestic Diesel Fuel Properties and Cetane Number", Korean Journal of Chemical Engineering, Vol. 38, No. 3, pp. 348-354, (2000).
  10. O. Keith, and C. Trevor, "Automotive Fuels Handbook", Society of Automotive Engineers, pp. 327-330, (1990).
  11. Waukesha, CFR Cetane Rating Unit, http://www.waukeshacfr.com/, (accessed, Sep., 2018).
  12. Herzog, Cetane ID 510 Brochure, http://www.paclp.com/, (accessed, Sep., 2018).
  13. ASTM D7668, "Standard Test Method for Determination of Ignition Delay and Derived Cetane Number(DCN) of Diesel Fuel Oils by Combustion in a Constant Volume Chamber", ASTM International, PA, (2017).
  14. ASTM D6890, "Standard Test Method for Determination of Ignition Delay and Derived Cetane Number(DCN) of Diesel Fuel Oils by Combustion in a Constant Volume Chamber", ASTM International, PA, (2016).
  15. KS M ISO 4264, "Petroleum Products-Calculation of Cetane Index of Middle-Distillate Fuels by the Four-Variable Equation", Korean Standard Association, (2003).
  16. KS M ISO 12185 "Crude petroleum and petroleum products-Determination of density-Oscillating U-tube method", Korean Standard Association, (2013).
  17. KS M ISO 3405, "Petroleum products-Determination of distillation characteristics", Korean Standard Association, (2016).
  18. KS M 2964, "Test method for determination of fatty acid methyl ester (FAME) in automotive diesel and biodiesel blends by high performance liquid chromatography(HPLC)", Korean Standard Association, (2010).