DOI QR코드

DOI QR Code

Review on the oxidation stability of biodiesel

바이오디젤의 산화 안정성 특성에 관한 고찰

  • Lee, Mi-Eun (Research Institute of Petroleum Technology, Korea Petroleum Quality & Distribution Authority) ;
  • Hwang, In-Ha (Research Institute of Petroleum Technology, Korea Petroleum Quality & Distribution Authority) ;
  • Kim, Jae-Kon (Research Institute of Petroleum Technology, Korea Petroleum Quality & Distribution Authority) ;
  • Na, Byung-Ki (Department of Chemical Engineering, Chungbuk National University)
  • 이미은 (한국석유관리원 석유기술연구소) ;
  • 황인하 (한국석유관리원 석유기술연구소) ;
  • 김재곤 (한국석유관리원 석유기술연구소) ;
  • 나병기 (충북대학교 화학공학과)
  • Received : 2018.11.28
  • Accepted : 2018.12.17
  • Published : 2018.12.31

Abstract

Biodiesel is a fuel produced in the form of a fatty acid methyl ester by using raw materials such as animal fat, vegetable oil and its by-products, and is being seen as a biofuel that can replace petroleum energy. However unsaturated fatty acid methyl esters in biodiesel causes to oxidize during storage and distribution, resulting in poor fuel quality and corrosion of vehicle engine components. In this study, the influence of quality and oxidation characteristics of biodiesel on the oxidation stability is investigated and the evaluation method related it is described. We also propose a method to improve the drawback of oxidation stability in biodiesel.

바이오디젤은 동물성 유지, 식물성 유지와 그 부산물 등의 원료를 사용하여 지방산 메틸에스테르 형태로 제조된 연료이며, 석유계 에너지를 대체할 수 있는 바이오연료로 각광받고 있다. 그러나 바이오디젤은 저장 및 유통 과정에서 불포화 지방산 메틸에스테르가 산화되면서 연료의 품질이 저하되거나 자동차 엔진부품을 부식시키는 등의 문제를 일으킨다. 따라서 본 연구에서는 바이오디젤의 품질과 산화 특성이 산화 안정성에 미치는 영향을 알아보고, 이와 관련된 평가 방법에 대해 기술하였다. 또한 바이오디젤의 산화 안정성 단점을 개선할 수 있는 방안을 고찰하였다.

Keywords

HGOHBI_2018_v35n4_1013_f0001.png 이미지

Fig. 1. Fatty acid methyl ester molecules in biodiesel.

HGOHBI_2018_v35n4_1013_f0002.png 이미지

Fig. 2. Mechanism for the auto-oxidation of linoleic acid methyl ester leading to the formation of its hydroperoxides[4].

HGOHBI_2018_v35n4_1013_f0003.png 이미지

Fig. 3. Different oxidation products of biodiesel[4].

HGOHBI_2018_v35n4_1013_f0004.png 이미지

Fig. 5. Principle of the Rancimat method[74].

HGOHBI_2018_v35n4_1013_f0005.png 이미지

Fig. 6. The example of the Rancimat test data for rapeseed biodiesel sample, RIP=4.54 h[74].

HGOHBI_2018_v35n4_1013_f0006.png 이미지

Fig. 4. (a) Cyclohexene derivative formed by the Diels Alder reaction of linoleic acid, (b) Diels Alder reaction of linoleic acid to form the dimer[4].

Table 1. The fatty acid composition (mass%) of some biodiesel feedstocks

HGOHBI_2018_v35n4_1013_t0001.png 이미지

Table 2. The standard value of some of the fuel parameters of biodiesel and diesel

HGOHBI_2018_v35n4_1013_t0002.png 이미지

Table 3. The iodine value of biodiesel from different feedstocks[54,55,57]

HGOHBI_2018_v35n4_1013_t0003.png 이미지

Table 4. The peroxide value of different oils used for biodiesel production

HGOHBI_2018_v35n4_1013_t0004.png 이미지

Table 5. Summary of the analysis conditions for determination of ester content.

HGOHBI_2018_v35n4_1013_t0005.png 이미지

Table 6. Standards to determine stability of biodiesel

HGOHBI_2018_v35n4_1013_t0006.png 이미지

References

  1. S. Jain, M.P. Sharma, "Stability of biodiesel and its blends: a review", Renew. Sustain. Energy Rev., Vol.14, pp. 667-678, (2010). https://doi.org/10.1016/j.rser.2009.10.011
  2. S. Jain, M.P. Sharma, "Oxidation stability of blends of Jatropha biodiesel with diesel", Fuel, Vol.90, pp. 3014-3020, (2011). https://doi.org/10.1016/j.fuel.2011.05.003
  3. J. Pullen, K. Saeed, "An overview of biodiesel oxidation stability", Renew. Sustain. Energy Rev., Vol.16, pp.5924-5950, (2012). https://doi.org/10.1016/j.rser.2012.06.024
  4. Z. Yaakob, B. N. Narayanan, S. Padikkaparambil, K. S. Unni, P. M. Akbar, "A review on the oxidation stability of biodiesel", Renew. Sustain. Energy Rev., Vol.35, pp. 136-153, (2014). https://doi.org/10.1016/j.rser.2014.03.055
  5. Z. Yaakob, M. Mohammad, A. Mohammad, Z. Alam, K. Sopian, "Overview of the production of biodiesel from waste cooking oil", Renew. Sustain. Energy Rev., Vol.18, pp. 184-193, (2013). https://doi.org/10.1016/j.rser.2012.10.016
  6. F. D. Gunstone, R. J. Hamilton, Oleo chemical manufacture and applications, p. 106-163, Sheffield academic press, (2001).
  7. M. S. Graboski, R. L. McCormick, "Combustion of fat and vegetable oil derived fuels in diesel engines", Prog. Energy Combust. Sci., Vol.24, pp. 125-164, (1998). https://doi.org/10.1016/S0360-1285(97)00034-8
  8. G. Knothe, R. O. Dunn, M. O. Bagby, Biodiesel: the use of vegetable oils and their derivatives as alternative diesel fuels, ACS symposium series, p. 172-208, (1997).
  9. A.W. Schwab, M. O. Bagby, B. Freedman, "Preparation and properties of diesel fuels from vegetable oils", Fuel, Vol.66, pp. 1372-1378, (1987). https://doi.org/10.1016/0016-2361(87)90184-0
  10. J. H. Van Gerpen, S. Soylu, M. T. Tat, "Evaluation of the lubricity of soybean oil-based additives in diesel fuel", Proceedings of Annual International Meeting of the ASAE, American society of Agricultural Engineers, St. Joseph, MI(USA), Paper No.996134, (1996).
  11. A. B. Chhetri, K. C. Watts, M. R. Islam, "Waste cooking oil as an alternate feedstock for biodiesel production", Energies, Vol.1, pp. 3-18, (2008). https://doi.org/10.3390/en1010003
  12. R. O. Dunn, "Antioxidants for improving storage stability of biodiesel", Biofuel Bioprod. Biorefin. Vol.2, pp. 304-318, (2008). https://doi.org/10.1002/bbb.83
  13. S. Jain, M. P. Sharma. "Oxidation, thermal, and storage stability studies of Jatropha curcas biodiesel". ISRN Renewable Energy, Vol.2012, Article ID 861293, pp. 1-15, (2012).
  14. Y. Wang, S. Ou, P. Liu, Z. Zhang, "Preparation of biodiesel from waste cooking oil via two-step catalysed process", Energy Convers. Manag., Vol.48, pp. 184-188, (2007). https://doi.org/10.1016/j.enconman.2006.04.016
  15. F. Ma, M. A. Hanna, "Biodiesel production: a review", Bioresource Technology, Vol.70, pp. 1-15, (1999). https://doi.org/10.1016/S0960-8524(99)00025-5
  16. Z. Yaakob ,S. Irwan, B. Narayanan, S. R. S. Abdullah, M. Ismail. "Utilization of palm empty fruit bunch for the production of biodiesel from Jatropha curcas oil", Bioresource Technology, Vol.104, pp. 695-700, (2012). https://doi.org/10.1016/j.biortech.2011.10.058
  17. M. Agarwal, G. Chauhan, S. P. Chaurasia, K. Singh. "Study of catalytic behavior of KOH as homogeneous and heterogeneous catalyst for biodiesel production", J. Taiwan Inst. Chem. Eng., Vol.43 pp. 89-94, (2012). https://doi.org/10.1016/j.jtice.2011.06.003
  18. A. Emil, Z. Yaakob, M. N. S. Kumar, J. M. Jahim, J. Salimon, "Comparative evaluation of physicochemical properties of jatropha seed oil from Malaysia, Indonesia and Thailand", J. Am. Oil. Chem. Soc., Vol.87, pp. 689-695, (2010). https://doi.org/10.1007/s11746-009-1537-6
  19. K. M. N. Satheesh, Z. Yaakob, S. R. S. Abdullah, "Applications of jatropha oil seed crop", Recent Pat. Mater. Sci., Vol.2, pp. 131-139, (2009). https://doi.org/10.2174/1874464810902020131
  20. Z. Yaakob, M. Mohammad, M. Alherbawi, Z. Alam, K. Sopian, "Overview of production of biodiesel from waste cooking oil", Renew. Sustain. Energy Rev., Vol.18, pp. 184-193, (2013). https://doi.org/10.1016/j.rser.2012.10.016
  21. Z. Yaakob, B. H. Ong, M. N. S. Kumar, S. K., Kamarudin, "Microwave-assisted transesterification of jatropha and waste frying palm oil", Int. J. Sustain. Energy, Vol.28, pp. 195-201, (2009). https://doi.org/10.1080/14786450903161006
  22. S. R Kalbande, G. R. More, R. G. Nadre, "Biodiesel production from non-edible oils of jatropha and karanj for utilization in electrical generator", Bioenerg. Res., Vol.1, pp. 170-178, (2008). https://doi.org/10.1007/s12155-008-9016-8
  23. K. R. Yee, J. C. S. Wu, K. T. Lee, "A green catalyst for biodiesel production from jatropha oil : optimization study", Biomass Bioenergy, Vol.35, pp. 1739-1746, (2011). https://doi.org/10.1016/j.biombioe.2011.01.017
  24. Y. H. Taufiq-Yap, H. V. Lee, M. Z. Hussein, R. Yunus, "Calcium-based mixed oxide catalysts for methanolysis of Jatropha curcas oil to biodiesel", Biomass and Bioenergy, Vol.35, pp. 827-834, (2011). https://doi.org/10.1016/j.biombioe.2010.11.011
  25. G. Knothe, "Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters", Fuel Processing Technology, Vol.86, pp. 1059-1070, (2005). https://doi.org/10.1016/j.fuproc.2004.11.002
  26. A. Bouaid, M. Martinez, J. Aracil, "Long storage stability of biodiesel from vegetable and used frying oils", Fuel, Vol.86, pp. 2596-2602, (2007). https://doi.org/10.1016/j.fuel.2007.02.014
  27. L. P. F. C. Galvao, A. G. D. Santos, A. D. Gondim, M. N. Barbosa,et al, "Comparative study of oxidative stability of sunflower and cotton biodiesel through PDSC", J. Therm. Anal. Calorim., Vol.106, pp. 625-629, (2011). https://doi.org/10.1007/s10973-011-1411-2
  28. J. Xin, S. Saka, Green energy and technology, p. 171-175, Spinger, (2010).
  29. G. Knothe "Some aspects of biodiesel oxidative stability", Fuel Processing Technology, Vol.88, pp. 669-677, (2007). https://doi.org/10.1016/j.fuproc.2007.01.005
  30. B. K. Barnwal, M. P. Sharma, "Prospects of biodiesel production from vegetables oils in India", Renew. Sustain. Energy Rev., Vol.9, pp. 363-378, (2005). https://doi.org/10.1016/j.rser.2004.05.007
  31. G. Knothe, R. O. Dunn, "Dependence of oil stability index of fatty compounds on their structure and concentration and presence of metals", J. Am. Oil. Chem. Soc., Vol.80, pp. 1021-1026, (2003). https://doi.org/10.1007/s11746-003-0814-x
  32. M. B. Dantas, A. R. Albuquerque, L. E. B. Soledade, et al., "Biodiesel from soybean oil, castor oil and their blends oxidative stability by PDSC and rancimat", J. Therm. Anal. Calorim., Vol.106, pp. 607-611, (2011). https://doi.org/10.1007/s10973-011-1410-3
  33. J. A. Waynick, "Characterization of biodiesel oxidation and oxidation products", Technical report CRC, project No.AVFL-2b, (2005).
  34. S. Jain, M. P. Sharma, "Review of different test methods for the evaluation of stability of biodiesel", Renew. Sustain. Energy Rev., Vol.14, pp. 1937-1947, (2010). https://doi.org/10.1016/j.rser.2010.04.011
  35. S. Jain, M. P. Sharma, "Thermal stability of biodiesel and its blends: a review", Renew. Sustain. Energy Rev., Vol.15, pp. 438-448, (2011). https://doi.org/10.1016/j.rser.2010.08.022
  36. J. Terao, S. Matsushita, "Products formed by photosensitized oxidation of unsaturated fatty acid esters", J. Am. Oil. Chem. Soc., Vol.54, pp. 234-238, (1977). https://doi.org/10.1007/BF02655162
  37. R. O. Dunn, "Effect of temperature on the oil stability index(OSI) of biodiesel", Energy Fuels, Vol.22, pp. 657-662, (2008). https://doi.org/10.1021/ef700412c
  38. N. T. Joyner, J. E. McIntyre. "The oven test as an index of keeping quality", J. Am. Oil. Chem. Soc., Vol.15, pp. 184-186, (1938).
  39. M. W. Formo, E. Jungermann, F. Norris, N. O. V. Sonntag, Bailey's industrial oil and fat products, p. 698-711, John Wiley and Son, (1979).
  40. S. Pinzi, L. GarciaI, F. J. L. Gimenez, M. D. L. Castro, G. Dorado, M. P. Dorad, "The ideal vegetable oil-based biodiesel composition: a review of social, economical and technical implications", Energy Fuels, Vol.23, pp. 2325-2341, (2009). https://doi.org/10.1021/ef801098a
  41. D. Tomes, P. Lakshmanan, D. Songstad, Biofuels: global impact on renewable energy, production agriculture and technological advancements, p. 313-316, Springer, (2011).
  42. E. G. Giakoumis, "A statistical investigation of biodiesel physical and chemical properties and their correlation with the degree of unsaturation", Renewable. Energy, Vol.50, pp. 858-878, (2013). https://doi.org/10.1016/j.renene.2012.07.040
  43. S. K. Hoekman, A. Broch, C. Robbins, E. Ceniceros, M. Natarajan, "Review of biodiesel composition, properties and specifications", Renew. Sustain. Energy Rev., Vol.16, pp. 143-169, (2012). https://doi.org/10.1016/j.rser.2011.07.143
  44. R. O. Dunn, "Effect of oxidation under accelerated conditions on fuel properties of methyl soyate(biodiesel)", J. Am. Oil. Chem. Soc., Vol.79, pp. 915-920, (2002). https://doi.org/10.1007/s11746-002-0579-2
  45. S. Schober, M. Mittelbach, "Iodine value and biodiesel: is limitation still appropriate?", Lipid Technolgy, Vol.19, pp. 281-284, (2007). https://doi.org/10.1002/lite.200700091
  46. EN 14112, "Fat and oil derivatives. fatty acid methyl ester(FAME). determination of oxidation stability(accelerated oxidation test)", European Committee for Standardization, Berlin, (2003).
  47. M. D. Guillen, A. Ruiz, "High resolution 1H nuclear magnetic resonance in the study of edible oils and fats", Trends Food Sci. Technol., Vol.12, pp. 328-338, (2001). https://doi.org/10.1016/S0924-2244(01)00101-7
  48. M. D. Guillen, A. Ruiz, "Rapid simultaneous determination by proton NMR of unsaturation and composition of acyl groups invegetable oils, Eur. J. Lipid Sci. Technol., Vol.105, pp. 688-696, (2003). https://doi.org/10.1002/ejlt.200300866
  49. G. Knothe, J. A. Kenar, "Determination of the fatty acid profile by 1H NMR spectroscopy", Eur. J. Lipid Sci. Technol., Vol.106, pp. 88-96, (2004). https://doi.org/10.1002/ejlt.200300880
  50. M. R. Monteiro, A. R. P. Ambrozin, L. M. Liao, A. G. Ferreira, "Determination of biodiesel blend levels in different diesel samples by 1H NMR", Fuel, Vol.88, pp. 691-696, (2009). https://doi.org/10.1016/j.fuel.2008.10.010
  51. M. Oromi-Farrus, G. Villorbina, J. Eras, F. Gatius, M. Torres, R. Canela, "Determination of the iodine value of biodiesel using 1H NMR with 1,4-dioxaneasan internal standard", Fuel, Vol.89, pp. 3489-3492, (2010). https://doi.org/10.1016/j.fuel.2010.06.016
  52. G. Knothe, "Structure indices in FA chemistry. How relevant is the iodine number", Am. Oil. Chem. Soc., Vol.79, pp. 847-854, (2002). https://doi.org/10.1007/s11746-002-0569-4
  53. A. Gopinath, S. Puhan, G. G. Nagarajan, "Theoretical modeling of iodine value and saponification value of biodiesel fuels from their fatty acid composition", Renewable Energy, Vol.34, pp. 1806-1811, (2009). https://doi.org/10.1016/j.renene.2008.11.023
  54. M. Ramos, C. Fernandez, A. Casas, L. Rodriguez, A. Perez, "Influence of fatty acid composition of raw materials on biodiesel properties", Bio. resour. Technol., Vol.100, pp. 261-268, (2009). https://doi.org/10.1016/j.biortech.2008.06.039
  55. V. T. Wyatt, M. A. Hess, R. O. Dunn, T. A. Foglia, M. J. Haas, W. N. Marmer, "Fuel properties and nitrogen oxide emission levels of biodiesel produced from animal fats", J. Am. Oil. Chem. Soc., Vol.82, pp. 585-591, (2005). https://doi.org/10.1007/s11746-005-1113-2
  56. B. S. Chauhan, N. Kumar, H. N. Cho, "A study on the performance and emission of a diesel engine fueled with jatropha biodiesel oil and its blends", Energy, Vol.37, pp. 616-622, (2012). https://doi.org/10.1016/j.energy.2011.10.043
  57. K. Niraj, Varun, C. SantRam, "Performance and emission characteristics of biodiesel from different origins: A review", Renew. Sustain. Energy Rev., Vol.21, pp. 633-658, (2013). https://doi.org/10.1016/j.rser.2013.01.006
  58. W. D. Pocklington, "Determination of the iodine value of oils and fats", Pure Appl. Chem., Vol.62, pp. 2339-2343, (1990). https://doi.org/10.1351/pac199062122339
  59. N. Usta, B. Aydogan, A. H. C, on, E. Uguzdogan, S. G. Ozkal, "Properties and quality verification of biodiesel produced from to bacco seed oil", Energ. Convers. Manage., Vol.52, pp. 2031-2039, (2011). https://doi.org/10.1016/j.enconman.2010.12.021
  60. S. Gan, H. K. Ng, "Effects of antioxidant additives on pollutant formation from the combustion of palm oil methyl ester blends with diesel in a non-pressurised burner", Energ. Convers. Manage., Vol.51, pp. 1536-1546, (2010). https://doi.org/10.1016/j.enconman.2010.02.012
  61. M. A. Hess, M. J. Haas, T. A. Foglia, W. N. Marmer, "Effect of antioxidant addition on NOx emissions from biodiesel", Energy Fuel, Vol.19, pp. 1749-1754, (2005). https://doi.org/10.1021/ef049682s
  62. E. Ileri, G. Kocar, "Effects of antioxidant additives on engine performance and exhaust emissions of a diesel engine fueled with canola oil methyl ester diesel blend", Energ. Convers. Manage., Vol.76, pp. 145-154, (2013). https://doi.org/10.1016/j.enconman.2013.07.037
  63. P. Q. E. Clothier, B. D. Aguda, A. Moise, H. Pritchard, "How do diesel-fuel ignition improvers work?" Chem. Soc. Rev., Vol.22, pp. 101-108, (1993). https://doi.org/10.1039/cs9932200101
  64. A. Monyem, J. H. VanGerpen, "The effect of biodiesel oxidation on engine performance and emissions", Biomass and Bioenergy, Vol.20, pp. 317-325, (2001). https://doi.org/10.1016/S0961-9534(00)00095-7
  65. Y. H. Chen, J. H. Chen, Y. M. Luo, N. C. Shang, C. H. Chang, C. Y. Chang, et al., "Property modification of jatropha oil biodiesel by blending with other biodiesels or adding antioxidants", Energy, Vol.36, pp. 4415-4421, (2011). https://doi.org/10.1016/j.energy.2011.04.001
  66. S. Jain, M. P. Sharma, "Long term storage stability of Jatropha curcas biodiesel", Energy, Vol.36, pp. 5409-5412, (2011). https://doi.org/10.1016/j.energy.2011.06.055
  67. S. Lebedevas, V. Makareviciene, E. Sendzikiene, J. Zaglinskis, "Oxidation stability of biofuel containing Camelina sativa oil methyl esters and its impact on energy and environmental indicators of diesel engine", Energ. Convers. Manage., Vol.65, pp. 33-40, (2013). https://doi.org/10.1016/j.enconman.2012.07.010
  68. L. M. Das, D. K. Bora, S. Pradhan, M. K. Naik, S. N. Naik, "Long-term storage stability of biodiesel produced from Karanja oil", Fuel, Vol.88, pp. 2315-2318, (2009). https://doi.org/10.1016/j.fuel.2009.05.005
  69. A. Monyem, M. Canakci, J. VanGerpen, "Investigation of biodiesel thermal stability under simulated in-use conditions", Appl. Eng. Agric, Vol.16, pp. 373-378, (2000). https://doi.org/10.13031/2013.5213
  70. P. Bondioli, A. Gasparoli, L. D. Bella, S. Tagliabue, "Evaluation of biodiesel storage stability using reference methods", Eur. J. Lipid Sci. Technol., Vol.104, pp. 777-784, (2002). https://doi.org/10.1002/1438-9312(200212)104:12<777::AID-EJLT777>3.0.CO;2-#
  71. M. Shahabuddin, M. A. Kalam, H. H. Masjuki, M. M. K. Bhuiya, M. Mofijur, "An experimental investigation into biodiesel stability by means of oxidation and property determination", Energy, Vol.44, pp. 616-622, (2012). https://doi.org/10.1016/j.energy.2012.05.032
  72. J. P. Cosgrove, D. F. Church, W. A. Pryor, "The kinetics of the autoxidation of polyunsaturated fatty acids", Lipids, Vol.22, pp. 299-304, (1987). https://doi.org/10.1007/BF02533996
  73. R. L. McCormick, M. Ratcliff, L. Moens, R. Lawrence, "Several factors affecting the stability of biodiesel in standard accelerated tests", Fuel Process. Technol., Vol.88, pp. 651-657, (2007). https://doi.org/10.1016/j.fuproc.2007.01.006
  74. J. Pullen, K. Saeed, "An overview of biodiesel oxidation stability", Renew. Sustain. Energy Rev., Vol.16, pp. 5924-5950, (2012). https://doi.org/10.1016/j.rser.2012.06.024
  75. G. Knothe, "Some aspects of biodiesel oxidative stability", Fuel Process. Technol., Vol.88, pp. 669-677, (2007). https://doi.org/10.1016/j.fuproc.2007.01.005
  76. A. Sarin, R. Arora, N. P. Singh, M. Sharma, R. K. Malhotra, "Influence of metal contaminants on oxidation stability of Jatropha biodiesel", Energy, Vol.34, pp. 1271-1275, (2009). https://doi.org/10.1016/j.energy.2009.05.018
  77. G. Karavalakis, S. Stournas, D. Karonis, "Evaluation of the oxidation stability of diesel/biodiesel blends", Fuel, Vol.89, pp. 2483-2489, (2010). https://doi.org/10.1016/j.fuel.2010.03.041
  78. L. F. B. de Lira, M. S. deAlbuquerque, J. G. A. Pacheco, T. M. Fonseca, E. H. de Siqueira Cavalcanti, L. Stragevitch, M. F. Pimentel, "Infrared spectroscopy and multivariate calibration to monitor stability quality parameters of biodiesel", Microchem. J., Vol.96, pp. 126-131, (2010). https://doi.org/10.1016/j.microc.2010.02.014
  79. Y. C. Liang, C. Y. May, C. S. Foon, M. A. Ngan, C. C. Hock, Y. Basiron", The effect of natural and synthetic antioxidants on the oxidative stability of palm diesel", Fuel, Vol.85, pp. 867-870, (2006). https://doi.org/10.1016/j.fuel.2005.09.003
  80. P. Udomsap, N. Chollacoop, S. Topaiboul, T. Hirotsu, "Effect of antioxidants on the oxidative stability of waste cooking oil based biodiesel under different storage conditions", Int. J. Renew. Energy, Vol.4, pp. 47-59, (2009).
  81. M. Berrios, M. A. Martin, A. F. Chica, A. Martin, "Storage effect in the quality of different methyl esters and blends with diesel", Fuel, Vol.91, pp. 119-125, (2012). https://doi.org/10.1016/j.fuel.2011.07.021
  82. ASTM D6584-17, "Standard test method for determination of total monoglycerides, total diglycerides, and free and total glycerine in B-100 biodiesel methyl esters by gas chromatography", ASTM International, West Conshohocken. PA, 2017, www.astm.org.
  83. ASTM D6468-08(2013), "Standard test method for high temperature stability of middle distillate fuels", ASTM International, West Conshohocken. PA, 2013, www.astm.org.
  84. W. B. WanNik, F. N. Ani, H. H. Masjuki, "Thermal stability evaluation of palm oil as energy transport media", Energy Convers. Manag., Vol.46, pp.2198-2215, (2005). https://doi.org/10.1016/j.enconman.2004.10.008
  85. ASTM D4625-16e1, "Standard test method for middle distillate fuel storage stability at $43^{\circ}C(110^{\circ}F)$", ASTM International, West Conshohocken. PA, 2016, www.astm.org.
  86. ASTM D5304-15, "Standard test method for assessing middle distillate fuel storage stability by oxygen overpressure", ASTM International, West Conshohocken. PA, 2015, www.astm.org.
  87. ASTM D2274-14, "Standard test method for oxidation stability of distillate fuel oil (accelerated method)", ASTM International, West Conshohocken. PA, 2014, www.astm.org.
  88. R. M. Bryan, "Comparative oxidative stability of fatty acid alkyl esters by accelerated methods", J. Am. Oil. Chem. Soc., Vol.86, pp. 699-706, (2009). https://doi.org/10.1007/s11746-009-1376-5
  89. T. Dittmar, B. Ondruschka, J. Haupt, M. Lauterbach, "Improvement of the oxidative stability of fatty acid methyl esters with antioxidants - limits of the Rancimat test", Chem. Ing. Tech., Vol.76, pp. 1167-1170, (2004). https://doi.org/10.1002/cite.200403423
  90. ASTM D7545-14, "Standard test method for oxidation stability of middle distillate fuels-rapid small scale oxidation test(RSSOT)", ASTM International, West Conshohocken. PA, 2014, www.astm.org.
  91. H. Aatola, M. Larmi, T. Sarjovaara, S. Mikkonen, "Hydrotreated vegetable oil(HVO) as a renewable diesel fuel: trade-off between NOx, particulate emission, and fuel consumption of a heavy duty engine", SAE Int. J. Engines, Vol.1, pp. 1251-1262, (2009).
  92. J.-K. Kim, C. H. Jeon, E. S. Yim, C. S. Jung, "A study o the feul characteristics of Hydrotreated Biodiesel(HBD) for alternative diesel fuel", J. of Korean Oil Chemists Soc., Vol.28, No.4, pp. 508-516, (2011).