DOI QR코드

DOI QR Code

A Study on the Analysis of Safety Standard and Evaluation of Safety Performance for the 5 Nm3 /hr Class Alkaline Water Electrolysis System

5 Nm3 /hr급 알카라인 수전해 시스템 안전기준 분석 및 안전성능 평가에 관한 연구

  • Kim, Ji-Hye (Institute of Gas Safety R&D, Korea Gas Safety Corporation) ;
  • Lee, Eun-Kyung (Institute of Gas Safety R&D, Korea Gas Safety Corporation) ;
  • Kim, Min-Woo (Institute of Gas Safety R&D, Korea Gas Safety Corporation) ;
  • Oh, Gun-Woo (Institute of Gas Safety R&D, Korea Gas Safety Corporation) ;
  • Lee, Jung-Woon (Institute of Gas Safety R&D, Korea Gas Safety Corporation) ;
  • Kim, Woo-Seop (SUSOENERGEN, INC.)
  • 김지혜 (한국가스안전공사 가스안전연구원) ;
  • 이은경 (한국가스안전공사 가스안전연구원) ;
  • 김민우 (한국가스안전공사 가스안전연구원) ;
  • 오건우 (한국가스안전공사 가스안전연구원) ;
  • 이정운 (한국가스안전공사 가스안전연구원) ;
  • 김우섭 ((주)수소에너젠)
  • Received : 2018.10.20
  • Accepted : 2018.12.11
  • Published : 2018.12.31

Abstract

The wind energy produced at night is being discarded because of the excess power generated at night compared to daytime. To solve this problem, In this study, we analyzed the evaluation contents for evaluation of domestic and overseas water electrolysis systems and drew contents for safety performance contents test of the water electrolysis system based on the evaluation contents. The test contents produced the efficiency measurement test, the hydrogen generated pressure test, and the hydrogen purity test. And the safety performance evaluation of the alkaline water electrolysis system of $5Nm^3/hr$ was performed based on the results. As a result, the hydrogen generation was calculated as $5.10Nm^3/hr$ and the stack efficiency was $4.97kWh/Nm^3$. The purity of the hydrogen generated was 99.993% and it was confirmed that it produced high purity hydrogen. I think will help us assess and build safety performance of water electrolysis systems in the future.

풍력에너지는 낮에 비해 야간에 많은 잉여전력을 발생시키기 때문에 야간에 생산되는 전력은 버려지고 있는데, 이 문제를 해결하기 위해 풍력 등 재생에너지를 연계한 수전해 하이브리드 시스템 개발이 활발히 이루어지고 있다. 본 연구에서는 하이브리드 시스템 안전성 향상을 위해 국내 외 수전해 시스템 기준의 평가항목을 분석하였고, 평가 항목을 토대로 수전해 시스템의 안전성능 시험항목을 도출하였다. $5Nm^3/hr$급 수전해 시스템의 안전성능 평가를 위하여 시험항목 중 효율측정시험, 수소발생압력시험, 수소 순도시험을 평가하였다. 그 결과 수소발생량은 $5.10Nm^3/hr$, 스택효율은 $4.97kWh/Nm^3$로 산출되었고, 이때 발생한 수소의 순도는 99.993%로 국제기준 ISO 14687, SAE J2719에 명시된 순도보다 높은 순도의 수소를 생산하였음을 확인할 수 있었다. 본 연구 결과는 향후 수전해 시스템의 구축과 안전성능을 평가에 도움이 될 것이라고 기대한다.

Keywords

GSGSBE_2018_v22n6_65_f0001.png 이미지

Fig. 1. Picture of alkaline water electrolysis system.

GSGSBE_2018_v22n6_65_f0002.png 이미지

Fig. 2. P&ID of alkaline water electrolysis system.

Table 1. ESS market forecast for renewable energy[4]

GSGSBE_2018_v22n6_65_t0001.png 이미지

Table 2. Overseas standard for safety of hydrogen generator

GSGSBE_2018_v22n6_65_t0002.png 이미지

Table 3. Test contents of standard ISO 22734-1, ISO 22734-2

GSGSBE_2018_v22n6_65_t0003.png 이미지

Table 4. Grade by hydrogen purity[21-22]

GSGSBE_2018_v22n6_65_t0004.png 이미지

Table 5. Safety performance test category during normal operation

GSGSBE_2018_v22n6_65_t0005.png 이미지

Table 6. Specification for 5 Nm3/hr class water electrolysis system

GSGSBE_2018_v22n6_65_t0006.png 이미지

Table 7. Data of efficiency assessment of hydrogen quality and water electrolysis stack (1st test)

GSGSBE_2018_v22n6_65_t0007.png 이미지

Table 8. Data of efficiency assessment of hydrogen quality and water electrolysis stack (2nd test)

GSGSBE_2018_v22n6_65_t0008.png 이미지

Table 11. List of electrolyser suppliers in outside[25]

GSGSBE_2018_v22n6_65_t0009.png 이미지

Table 9. Results of analysis of hydrogen

GSGSBE_2018_v22n6_65_t0010.png 이미지

Table 10. Efficiency measurement results

GSGSBE_2018_v22n6_65_t0011.png 이미지

References

  1. Kim, K. H., "Adoption of Paris Agreement and Korea's Countermeasures", Korea Energy Economics Institute, 211, 22-27, (2016)
  2. New Energy and Renewable Energy Development, Use and Supply Promotion Law, Ministry of Trade, Industry and Energy, (2014)
  3. Status of Energy Storage Systems(ESS), Industrial Bank of Korea Technology Issue, 78-105, (2014)
  4. Lee, S. H., "Recent Global Issues and Implications of Renewable Energy", Industrial Bank of Korea Technology Issue, 72-93, (2016)
  5. Lee, S. H., "The Role of Hydrogen Energy for Renewable Energy 3020", Industrial Bank of Korea Technology Issue, 749, 55-69, (2018)
  6. Woo, S. K., You, J. H., and Moon, S. B., "Technology of High-Efficiency Water Electrolysis", News & Information for Chemical Engineers, 27(4), 429-433, (2009)
  7. Diogo M. F. Santos and Cesar A. C. Sequeira, "Hydrogen Production by Alkaline Water Electrolysis", Quim. Nova, 36(8), 1176-1193, (2013) https://doi.org/10.1590/S0100-40422013000800017
  8. Janusz Kotowicz, Michal Jurczyk, "Analysis of Hydrogen Production in Alkaline Electrolyzers", Journal of Power Technologies, 96(3), 149-156, (2016)
  9. Manabe. A., Hashimoto. T., Kashiwase. M., "Study of Alkaline Water Electrolysis", ECS Transactions, 41(31), 1-7, (2012)
  10. Alfredo Ursua, Luis M. Gandia, "Hydrogen Production from Water Electrolysis : Current Status and Future Trends", Proceedings of the IEEE, 100(2), 410-426, (2012) https://doi.org/10.1109/JPROC.2011.2156750
  11. Schmidt. O., Gambhir. A., Staffell. I., "Future Cost and Performance of Water Electrolysis : An Expert Elicitation Study", International Journal of Hydrogen Energy, 42, 30470-30492, (2017) https://doi.org/10.1016/j.ijhydene.2017.10.045
  12. Frano Barbir, "PEM Electrolysis for Production of Hydrogen from Renewable Energy Sources", Solar Energy, 78, 661-669, (2005) https://doi.org/10.1016/j.solener.2004.09.003
  13. Jun Chi, Hongmei Yu, "Water Electrolysis based on Renewable Energy for Hydrogen Production", Chinese Journal of Catalysis, 39, 390-394, (2018) https://doi.org/10.1016/S1872-2067(17)62949-8
  14. Qingshan Li, Yifeng Zheng, Wanbing Guan, "Achieving High-Efficiency Hydrogen Production Using Planar Solid-Oxide Electrolysis Stacks", International Journal of Hydrogen Energy, 39, 10833-10842, (2014) https://doi.org/10.1016/j.ijhydene.2014.05.070
  15. Jan Pawel Stempien, Qiang Sun, Siew Hwa Chan, "Solid Oxide Electrolyzer Cell Modeling: A Review", Journal of Power Technologies, 93, (4), 216-246, (2013)
  16. ISO 16110-1 : Hydrogen Generators Using Fuel Processing Technologies - Part 1 :Safety, International Organization for Standardization, (2007)
  17. ISO 22734-1 : Hydrogen Generators Using Water Electrolysis Process-Part 1 :Industrial and commercial, International Organization for Standardization, (2008)
  18. ISO 22734-2 : Hydrogen Generators Using Water Electrolysis Process - Part2 : Residential Applications, International Organization for Standardization, (2011)
  19. ISO T/R 15916 : Basic Considerations for the Safety of Hydrogen Systems, International Organization for Standardization, (2015)
  20. GB/T 19774 : Specification of Water Electrolyte System for Producing Hydrogen, Chinese Standard, (2005)
  21. ISO 14687 : Hydrogen Fuel Quality - Product Specification, International Organization for Standardization, (1999)
  22. SAE J2719 : Hydrogen Fuel Quality for Fuel Cell Vehicle, Society of Automotive Engineers, (2011)
  23. Park, S. A., Lee, E. K., and Lee, J. W., "A Study on Performance Characteristic and Safety of Alkaline Water Electrolysis System", Trans. of Korean Hydrogen and New Energy Society, 28(6), 601-609, (2017) https://doi.org/10.7316/KHNES.2017.28.6.601
  24. Lee, T. H., "Overview and Prospect of the Water Electrolysis Device Technology", Journal of the Electric World, 14-17, (2015)
  25. "고압가스의 품질기준과 품질검사방법 등에 관한 고시", 산업통상자원부고시, 제2016-12호
  26. ISO 14687-2 : Hydrogen Fuel - Product Specification - Part 2: Proton Exchange Membrane (PEM) Fuel Cell Applications for Road Vehicles, International Organization for Standardization, (2012)
  27. Study on Development of Water Electrolysis in the EU-Final Report, E4tech Sarl with Element Energy Ltd for the Fuel Cells and Hydrogen Joint Undertaking, (2014)