DOI QR코드

DOI QR Code

Epigenetic Mechanisms of Depression: Role of Histone Modification and DNA Methylation in BDNF Gene

우울증의 후성유전기전: BDNF 유전자의 히스톤 변형 및 DNA 메틸화의 역할

  • Park, Sung Woo (Department of Convergence Biomedical Science, College of Medicine, Paik Institute for Clinical Research, Inje University)
  • 박성우 (인제대학교 의과대학 생의학융합교실, 백인제기념임상의학연구소)
  • Received : 2018.11.16
  • Accepted : 2018.12.11
  • Published : 2018.12.30

Abstract

Depression is a common, serious, and recurring mental disorder. The pathogenesis of depression involves many factors such as environmental factor, genetic factor and alteration of structure and function in neurobiological systems. Increasing evidence supports that epigenetic alteration may be associated with depression. The epigenetics is explained as the mechanisms by which environmental factor causes changes in chromatin structure and alters gene expression without changing DNA base sequence. DNA methylation and histone modification involving histone acetylation and methylation are the main epigenetic mechanisms. Animal studies have shown that stressful environment such as early life stress can leave persistent epigenetic marks in the genome, which alter gene expression and influence neural and behavioral function through adulthood. A potentially important gene in depression is brain-derived neurotrophic factor (BDNF). BDNF plays a central role in depression and antidepressant action. In studies of the rodent, exposure to stress at prenatal, postnatal, and adult stages alters BDNF expression through histone modification and DNA methylation of the BDNF gene which results in anxiety and depressive-like behavior. This review discusses recent advances in the study of the epigenetic mechanisms that contribute to depression, particularly histone modification and DNA methylation of the BDNF gene, that may help in the development of new targets for depression treatment.

우울증은 심각하며 재발하는 흔한 정신질환이다. 우울증은 환경 요인과 유전 요인, 그리고 신경생물학적 체계의 구조 및 기능의 변화로 발병한다. 후성유전학적 변화가 우울증과 관련 된다는 여러 연구들이 보고되었다. 후성 유전은 환경 요인이 크로마틴 구조를 변화시켜 DNA 염기 서열 변화 없이 유전자 발현을 조절하는 기전으로 설명된다. DNA 메틸화와 히스톤 아세틸화 및 메틸화를 포함하고 있는 히스톤 변형이 주요 후성유전기전으로 알려져 있다. 우울증 동물모델연구에서는 생애 초기 스트레스 같은 스트레스 환경이 게놈에 지속적으로 후성유전표지를 남기게 되고 이로 인해 유전자 발현이 변화되고 결국 성체가 되었을 때 신경 기능이나 행동 기능에 영향을 미치게 된다고 설명하고 있다. BDNF는 우울증과 관련된 대표적인 유전자로 알려져 있다. 설치류가 출생 전, 후, 그리고 성체 기간에 스트레스에 노출되면 해마에서 BDNF 유전자의 히스톤 변형과 DNA 메틸화 패턴이 변화되고 이로 인해 BDNF 발현이 변화된다. 이러한 과정은 불안과 우울 행동에도 영향을 미치게 된다. 본 종설에서는 BDNF 유전자의 히스톤 변형 및 DNA 메틸화와 같은 우울증 발병에 관여하는 후성유전기전의 최신 지견에 대해 논의하여 우울증 치료의 새로운 타겟 개발에 도움이 되고자 한다.

Keywords

SMGHBM_2018_v28n12_1536_f0001.png 이미지

Fig. 1. Nucleosome structure and histone modifications at N-terminal histone tails.

SMGHBM_2018_v28n12_1536_f0002.png 이미지

Fig. 2. Histone modifications regulated by stress or antidepressant treatment.

SMGHBM_2018_v28n12_1536_f0003.png 이미지

Fig. 3. CpG DNA methylation.

SMGHBM_2018_v28n12_1536_f0004.png 이미지

Fig. 4. DNA methylation pathways.

SMGHBM_2018_v28n12_1536_f0005.png 이미지

Fig. 5. Changes to DNA methylation at CpG island.

SMGHBM_2018_v28n12_1536_f0006.png 이미지

Fig. 6. MeCP2 regulation of chromatin remodelling and transcription.

SMGHBM_2018_v28n12_1536_f0007.png 이미지

Fig. 7. Structure of the human and rodent BDNF gene.

References

  1. Albuquerque Filho, M. O., DeFreitas, B. S., Garcia, R. C., Crivelaro, P. C., Schroder, N. and De Lima, M. N. 2017. Dual influences of early-life maternal deprivation on histone deacetylase activity and recognition memory in rats. Neuroscience 344, 360-370. https://doi.org/10.1016/j.neuroscience.2016.12.054
  2. Berger, S. L. 2007. The complex language of chromatin regulation during transcription. Nature 447, 407-412. https://doi.org/10.1038/nature05915
  3. Bienveu, T. and Chelly, J. 2006. Molecular genetics of Rett syndrome: when DNA methylation goes unrecognized. Nat. Rev. Genet.7, 415-426.
  4. Bird, A. 2008. The methyl-CpG-binding protein MeCP2 and neurological disease. Biochem. Soc. Trans. 36, 575-583. https://doi.org/10.1042/BST0360575
  5. Blaze, J., Asok, A. and Roth, T. L. 2015. Long-term effects of early-life caregiving experiences on brain-derived neurotrophic factor histone acetylation in the adult rat mPFC. Stress 18, 607-615. https://doi.org/10.3109/10253890.2015.1071790
  6. Boersma, G. J., Lee, R. S., Cordner, Z. A., Ewald, E. R., Purcell, R. H., Moghadam, A. A. and Tamashiro, K. L. 2014. Prenatal stress decreases BDNF expression and increases methylation of BDNF exon IV in rats. Epigenetics 9, 437-447. https://doi.org/10.4161/epi.27558
  7. Bosker, F. J., Hartman, C. A., Nolte, I. M., Prins, B. P., Terpstra, P. and Posthuma, D. et al. 2011. Poor replication of candidate genes for major depressive disorder using genome-wide association data. Mol. Psychiatry 16, 516-532. https://doi.org/10.1038/mp.2010.38
  8. Borrelli, E., Nestler, E. J., Allis, C. D. and Sassone-Corsi, P. 2008. Decoding the epigenetic language of neuronal plasticity. Neuron 60, 961-974. https://doi.org/10.1016/j.neuron.2008.10.012
  9. Boulle, F., van den Hove, D. L., Jakob, S. B., Rutten, B. P., Hamon, M., van Os, J., Lesch, K. P., Lanfumey, L., Steinbusch, H. W. and Kenis, G. 2012. Epigenetic regulation of the BDNF gene: implications for psychiatric disorders. Mol. Psychiatry 17, 584-596. https://doi.org/10.1038/mp.2011.107
  10. Brunoni, A. R., Lopes, M. and Fregni, F. 2008. A systematic review and meta-analysis of clinical studies on major depression and BDNF levels: implications for the role of neuroplasticity in depression. Int. J. Neuropsychopharmacol. 11, 1169-1180. https://doi.org/10.1017/S1461145708009309
  11. Carlberg, L., Scheibelreiter, J., Hassler, M. R., Schloegelhofer, M., Schmoeger, M., Ludwig, B. and Schosser, A. 2014. Brainderived neurotrophic factor (BDNF)-Epigenetic regulation in unipolar and bipolar affective disorder. J. Affect. Disord. 168, 399-406. https://doi.org/10.1016/j.jad.2014.07.022
  12. Choi, J. K. and Howe, L. J. 2009. Histone acetylation: truth of consequences? Biochem. Cell Biol. 87, 139-150. https://doi.org/10.1139/O08-112
  13. Covington 3rd H. E., Maze, I., LaPlant, Q. C., Vialou, V. F., Ohnishi, Y. N. and Berton, O. et al. 2009. Antidepressant actions of histone deacetylase inhibitors. J. Neurosci. 29, 11451-11460. https://doi.org/10.1523/JNEUROSCI.1758-09.2009
  14. D'addario, C., Dell'osso, B., Galimberti, D., Palazzo, M. C., Benatti, B., Di Francesco, A. and Maccarrone, M. 2013. Epigenetic modulation of BDNF gene in patients with major depressive disorder. Biol. Psychiatry 73, e6-7. https://doi.org/10.1016/j.biopsych.2012.07.009
  15. de Ruijter, A. J., van Gennip, A. H., Caron, H. N., Kemp, S. and van Kuilenburg, A. B. 2003. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem. J. 370, 737-749. https://doi.org/10.1042/bj20021321
  16. Duman, R. S. and Monteggia, L. M. 2006. A neurotrophic model for stress-related mood disorders. Biol. Psychiatry 59, 1116-1127. https://doi.org/10.1016/j.biopsych.2006.02.013
  17. Duman, R. S. 2004. Depression: a case of neuronal life and death? Biol. Psychiatry 56, 140-145. https://doi.org/10.1016/j.biopsych.2004.02.033
  18. Dwivedi, T. and Zhang, H. 2014. Lithium-induced neuroprotection is associated with epigenetic modification of specific BDNF gene promoter and altered expression of apoptotic-regulatory proteins. Front. Neurosci. 8, 457.
  19. Fuchikami, M., Morinobu, S., Segawa, M., Okamoto, Y., Yamawaki, S., Ozaki, N. and Terao, T. 2011. DNA methylation profiles of the brain-derived neurotrophic factor (BDNF) gene as a potent diagnostic biomarker in major depression. PLoS One 6, e23881. https://doi.org/10.1371/journal.pone.0023881
  20. Gassen, N. C., Fries, G. R., Zannas, A. S., Hartmann, J., Zschocke, J., Hafner, K. and Rein, T. et al. 2015. Chaperoning epigenetics: FKBP51 decreases the activity of DNMT1 and mediates epigenetic effects of the antidepressant paroxetine. Sci. Signal. 8, ra119. https://doi.org/10.1126/scisignal.aac7695
  21. Izzo, A. and Schneider, R. 2010. Chatting histone modifications in mammals. Brief. Funct. Genomics 9, 429-443. https://doi.org/10.1093/bfgp/elq024
  22. Januar, V., Ancelin, M. L., Ritchie, K., Saffery, R. and Ryan, J. 2015. BDNF promoter methylation and genetic variation in late-life depression. Transl. Psychiatry 5, e619. https://doi.org/10.1038/tp.2015.114
  23. Jiang, Y., Langley, B., Lubin, F. D., Renthal, W., Wood, M. A., Yasui, D. H., Kumar, A., Nestler, E. J., Akbarian, S. and Beckel-Mitchener, A. C. 2008. Epigenetics in the nervous system. J. Neurosci. 28, 11753-11759. https://doi.org/10.1523/JNEUROSCI.3797-08.2008
  24. Kouzarides, T. 2007. Chromatin modifications and their function. Cell 128, 693-705. https://doi.org/10.1016/j.cell.2007.02.005
  25. Le Francois, B., Soo, J., Millar, A. M., Daigle, M., Le Guisquet, A. M., Leman, S. and Albert, P. R. 2015. Chronic mild stress and antidepressant treatment alter 5-HT1A receptor expression by modifying DNA methylation of a conserved Sp4 site. Neurobiol. Dis. 82, 332-341. https://doi.org/10.1016/j.nbd.2015.07.002
  26. Lee, P. R., Brady, D. L., Shapiro, R. A., Dorsa, D. M. and Koenig, J. I. 2007. Prenatal stress generates deficits in rat social behavior: Reversal by oxytocin. Brain Res. 1156, 152-167. https://doi.org/10.1016/j.brainres.2007.04.042
  27. Martinowich, K., Hattori, D., Wu, H., Fouse, S., He, F., Hu, Y., Fan, G. and Sun, Y. E. 2003. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 302, 890-893. https://doi.org/10.1126/science.1090842
  28. McEwen, B. S., Magarinos, A. M. and Reagan, L. P. 2002. Structural plasticity and tianeptine: cellular and molecular targets. Eur. Psychiatry 17, 318-330. https://doi.org/10.1016/S0924-9338(02)00650-8
  29. McGowan, P. O., Suderman, M., Sasaki, A., Huang, T. C., Hallett, M. and Meaney, M. J. et al. 2011. Broad epigenetic signature of maternal care in the brain of adult rats. PLoS One 6, e14739. https://doi.org/10.1371/journal.pone.0014739
  30. Melas, P. A., Rogdaki, M., Lennrtsson, A., Bjork, K., Qi, H. S., Witasp, A. and Lavebratt, C. 2012. Antidepressant treatment is associated with epigenetic alterations in the promoter of P11 in a genetic model of depression. Int. J. Neuropsychopharmacol. 15, 669-679. https://doi.org/10.1017/S1461145711000940
  31. Meehan, R. R., Lewis, J. D. and Bird, A. P. 1992. Characterization of MeCP2, a vertebrate DNA binding protein with affinity for methylated DNA. Nucleic Acids Res. 20, 5085-5092. https://doi.org/10.1093/nar/20.19.5085
  32. Moore, L. D., Le, T. and Fan, G. 2013. DNA methylation and its basic function. Neuropsychopharmacology 38, 23-38. https://doi.org/10.1038/npp.2012.112
  33. Murgatroyd, C., Patchev, A. V., Wu, Y., Micale, V., Bockmuhl, Y. and Fischer, D. et al. 2009. Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat. Neurocsi. 12, 1559-1566. https://doi.org/10.1038/nn.2436
  34. Na, S. K., Won, E., Kang, J., Chang, H. S., Yoon, H. K., Tae, W. S., Kim, Y. K., Lee, M. S., Joe, S. H., Kim, H. and Ham, B. J. 2016. Brain-derived neurotrophic factor promoter methylation and cortical thickness in recurrent major depressive disorder. Sci. Rep. 6, 21089. https://doi.org/10.1038/srep21089
  35. Nephew, B. C. and Bridges, R. S. 2011. Effects of chronic social stress during lactation on maternal behavior and growth in rats. Stress 14, 677-684. https://doi.org/10.3109/10253890.2011.605487
  36. Nestler, E. J., Barrot, M., DiLeone, R. J., Eisch, A. J., Gold, S. J. and Monteggia, L. M. 2002. Neurobiology of depression. Neuron 34, 13-25. https://doi.org/10.1016/S0896-6273(02)00653-0
  37. Newell-Price, J., Clark, A. J. and King, P. 2000. DNA methylation and silencing of gene expression. Trends Endocrinol. Metab. 11, 142-148. https://doi.org/10.1016/S1043-2760(00)00248-4
  38. Ng, H. H. and Bird, A. 1999. DNA methylation and chromatin modification. Curr. Opin. Genet. Dev. 9, 158-163. https://doi.org/10.1016/S0959-437X(99)80024-0
  39. Onishchenko, N., Karpova, N., Sabri, F., Castren, E. and Ceccatelli, S. 2008. Long-lasting depression-like behavior and epigenetic changes of BDNF gene expression induced by perinatal exposure to methylmercury. J. Neurochem. 106, 1378-1387. https://doi.org/10.1111/j.1471-4159.2008.05484.x
  40. Rice, J. C. and Allis, C. D. 2001. Histone methylation versus histone acetylation: new insights into epigenetic regulation. Curr. Opin. Cell Biol. 13, 263-273. https://doi.org/10.1016/S0955-0674(00)00208-8
  41. Roth, T. L., Lubin, F. D., Funk, A. J. and Sweatt, J. D. 2009. Lasting epigenetic influence of early-life adversity on the BDNF gene. Biol. Psychiatry 65, 760-769. https://doi.org/10.1016/j.biopsych.2008.11.028
  42. Roth, T. L., Zoladz, P. R., Sweatt, J. D. and Diamond, D. M. 2011. Epigenetic modification of hippocampal BNDF DNA in adult rats in animal model of post-traumatic stress disorder. J. Psychiatr. Res. 45, 919-926. https://doi.org/10.1016/j.jpsychires.2011.01.013
  43. Roy. B., Shelton, R. C. and Dwivedi, Y. 2017. DNA methylation and expression of stress related genes in PBMC of MDD patients with and without serious suicidal ideation. J. Psychiatr. Res. 89, 115-124. https://doi.org/10.1016/j.jpsychires.2017.02.005
  44. Saavedra, K., Molina-Marquez, A. M., Saavedra, N., Zambrano, T. and Salazar, L. A. 2016. Epigenetic modifications of major depressive disorder. Int. J. Mol. Sci.17, E1279. https://doi.org/10.3390/ijms17081279
  45. Sales, A. J. and Joca, S. R. L. 2018. Antidepressant administration modulates stress-induced DNA methylation and DNA methyltransferase expression in rat prefrontal cortex and hippocampus. Behav. Brain Res. 343, 8-15. https://doi.org/10.1016/j.bbr.2018.01.022
  46. Sapolsky, R. M. 2000. Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch. Gen. Psychiatry 57, 925-935. https://doi.org/10.1001/archpsyc.57.10.925
  47. Schroeder, F. A., Lin, C. L., Crusio, W. E. and Akbarian, S. 2007. Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse. Biol. Psychiatry 62, 55-64. https://doi.org/10.1016/j.biopsych.2006.06.036
  48. Seo, M. K., Ly, N. N., Lee, C. H., Cho, H. Y., Choi, C. M., Nhu, L. H., Lee, J. G., Lee, B. J., Kim, G. M., Yoon, B. J., Park, S. W. and Kim, Y. H. 2016. Early life stress increases stress vulnerability through BDNF gene epigenetic changes in the rat hippocampus. Neuropharmacology 105, 388-397. https://doi.org/10.1016/j.neuropharm.2016.02.009
  49. Sheline, Y. I., Gado, M. H. and Kraemer, H. C. 2003. Untreated depression and hippocampal volume loss. Am. J. Psychiatry 160, 1516-1518. https://doi.org/10.1176/appi.ajp.160.8.1516
  50. Shirayama, Y., Chen, A. C., Nakagawa, S., Russell, D. S. and Duman, R. S. 2002. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J. Neuosci. 22, 3251-3261. https://doi.org/10.1523/JNEUROSCI.22-08-03251.2002
  51. St-Cyr, S. and McGowan, P. O. 2015. Programming of stress-related behavior and epigenetic neural gene regulation in mice offspring through maternal exposure to predator odor. Front. Behav. Neurosci. 9, 1-10.
  52. Sullivan, P. F., Neale, M. C. and Kendler, K. S. 2000. Genetic epidemiology of major depression: review and meta-analysis. Am. J. Psychiatry 157, 1552-1562. https://doi.org/10.1176/appi.ajp.157.10.1552
  53. Sun, H., Kennedy, P. J. and Nestler, E. J. 2013. Epigenetics of the depressed brain: role of histone acetylation and methylation. Neuropsychopharmacology 38, 124-137. https://doi.org/10.1038/npp.2012.73
  54. Tsankova, N. M., Berton, O., Renthal, W., Kumar, A., Neve, R. L. and Nestler, E. J. 2006. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat. Neurosci. 9, 519-525. https://doi.org/10.1038/nn1659
  55. Tsankova, N., Renthal, W., Kumar, A. and Nestler, E. J. 2007. Epigenetic regulation in psychiatric disorders. Nat. Rev. Neurosci. 8, 355-367. https://doi.org/10.1038/nrn2132
  56. Tsuang, M. T., Taylor, L. and Faraone, S. V. 2004. An overview of the genetics of psychotic mood disorders. J. Psychiatr. Res. 38, 3-15. https://doi.org/10.1016/S0022-3956(03)00096-7
  57. Vialou, V., Feng, J., Robison, A. T. and Nestler, E. J. 2013. Epigenetic mechanisms of depression and antidepressant action. Annu. Rev. Pharmacol. Toxicol. 53, 59-87. https://doi.org/10.1146/annurev-pharmtox-010611-134540
  58. Vogelauer, M., Wu, J., Suka, N. and Grunstein, M. 2000. Global histone acetylation and deacetylation in yeast. Nature 408, 495-498. https://doi.org/10.1038/35044127
  59. Wang, Y.and Leung, F. C. 2004. An evaluation of new criteria for CpG islands in the human genome as gene marker. Bioinformatics 20, 1170-1177. https://doi.org/10.1093/bioinformatics/bth059
  60. Weaver, I. C., Cervoni, N., Champagne, F. A., D'Alessio, A. C., Sharma, S. and Seckl, J. R. et al. 2004. Epigenetic programming by maternal behavior. Nat. Neurosci. 7, 847-854. https://doi.org/10.1038/nn1276
  61. Wu, C. T. and Morris, J. R. 2001. Genes, genetics, and epigenetics: a correspondence. Science 293, 1103-1105. https://doi.org/10.1126/science.293.5532.1103
  62. Yamawaki, Y., Fuchikami, M., Morinobu, S., Segawa, M., Matsumoto, T. and Yamawaki, S. 2011. Antidepressant-like effect of sodium butyrate (HDAC inhibitor) and its molecular mechanism of action in the rat hippocampus. World J. Biol. Psychiatry 13, 458-467.
  63. Yasuda, S., Liang, M. H., Marinova, Z., Yahyavi, A. and Chuang, D. M. 2009. The mood stabilizers lithium and valproate selectively activate the promoter IV of brain-derived neurotrophic factor in neurons. Mol. Psychiatry 14, 51-59. https://doi.org/10.1038/sj.mp.4002099
  64. Zheng, Y., Fan, W., Zhang, X. and Dong, E. 2016. Gestational stress induces depressive-like and anxiety-like phenotypes through epigenetic regulation of BDNF expression in offspring hippocampus. Epigenetics 11, 150-162. https://doi.org/10.1080/15592294.2016.1146850