DOI QR코드

DOI QR Code

LOD(Level of Detail) Model for Utilization of Indoor Spatial Data

실내 공간정보 활용을 위한 세밀도 모델

  • Received : 2018.11.19
  • Accepted : 2018.12.11
  • Published : 2018.12.31

Abstract

As the map paradigm shifts from analog to digital, the LOD (Level Of Detail) of spatial information needs to be redefined. In this study, we propose 4- dimensional indoor LOD model which can be used in digital map environment. For this purpose, the limitation of the previous research is derived through study of related works, and based on this, four different LODs are defined such PLOD (Position accuracy LOD) based on position accuracy, GLOD (Geometric LOD) based on shape representation, CLOD (Complete LOD) based on generalization, and SLOD (Semantic LOD) based on theme accuracy. In addition, we describe the relationships among the four different LODs, and explain how to express the indoor LOD using the four different LODs and show examples. In the future, the case studies of indoor LOD adoption for various indoor services and the study of method for applying CLOD and SLOD to each feature should be performed to verify the feasibility and validity of proposed indoor LOD.

아날로그 지도에서 디지털 지도로의 지도 패러다임의 변화에 따라 공간정보의 세밀도 개념의 재정의가 필요하다. 이에, 본 연구에서는 디지털 지도 환경에서 활용될 수 있는 4차원 실내 세밀도 모델을 정의하였다. 이를 위하여 기존의 세밀도 개념의 한계점을 도출하고, 이를 기반으로 실내공간정보의 위치 정확도 기반의 위치 세밀도(PLOD: Position accuracy Level Of Detail), 형상 표현기반의 기하 세밀도(GLOD: Geometric Level Of Detail), 일반화 기반의 완성도 세밀도(CLOD: Complete Level Of Detail), 주제 정확도 기반의 의미 세밀도(SLOD: Semantic Level Of Detail)의 4가지의 다른 세밀도를 정의하였다. 또한, 본 연구에서 정의한 4가지의 서로다른 세밀도간의 유기적 관계에 대해 설명하고, 이를 통해 실내 공간정보의 세밀도를 4차원으로 표현하는 방법과 적용 방법 및 예시를 보였다. 향후, 본 연구에서 제시한 4차원의 실내공간 세밀도의 효용성과 타당성을 검증하기 위하여 다양한 실내 서비스를 위한 세밀도 적용 사례 연구와 지형지물 별 완성도 세밀도와 의미 세밀도를 적용하기 위한 연구가 수행되어야 한다.

Keywords

GCRHBD_2018_v36n6_545_f0001.png 이미지

Fig. 1. Positional accuracy LOD

GCRHBD_2018_v36n6_545_f0002.png 이미지

Fig. 2. Definition of geometric LOD

GCRHBD_2018_v36n6_545_f0003.png 이미지

Fig. 3. Example of GLOD for lamp and chair

GCRHBD_2018_v36n6_545_f0004.png 이미지

Fig. 4. Concept of appearance LOD

GCRHBD_2018_v36n6_545_f0005.png 이미지

Fig. 5. Definition of complete LOD

GCRHBD_2018_v36n6_545_f0006.png 이미지

Fig. 6. Example of CLODs of Building

GCRHBD_2018_v36n6_545_f0007.png 이미지

Fig. 7. Definition of semantic LOD

GCRHBD_2018_v36n6_545_f0008.png 이미지

Fig. 8. Example of semantic LOD

GCRHBD_2018_v36n6_545_f0009.png 이미지

Fig. 9. Example of IndoorLOD matrix

GCRHBD_2018_v36n6_545_f0010.png 이미지

Fig. 10. Example of IndoorLOD P3.G3.C3.S2 for evacuation simulation

GCRHBD_2018_v36n6_545_f0011.png 이미지

Fig. 11. Example of IndoorLOD P3.G4.C3.S4 for facility management

Table 1. LOD 0-4 of CityGML with its accuracy requirements (OGC, 2012)

GCRHBD_2018_v36n6_545_t0001.png 이미지

Table 2. Charateristics of indoor LOD model (Kang and Lee, 2014)

GCRHBD_2018_v36n6_545_t0002.png 이미지

Table 3. Parameters of concern to define Indoor LOD

GCRHBD_2018_v36n6_545_t0003.png 이미지

Table 4. Parameters and its definition for Indoor Service LODs

GCRHBD_2018_v36n6_545_t0004.png 이미지

Table 5. Requirements of indoor disaster management service

GCRHBD_2018_v36n6_545_t0005.png 이미지

References

  1. Benjamin H., Matthias T., Tassilo G., and Jurgen D. (2009), Towards an indoor level-of-detail model for route visualization, International conference on Mobile Data Management:Systems, Services and Middleware, IEEE, 18-20 May, Taipei, Taiwan, pp. 692-697.
  2. Benner, J., Geiger, A., Groger, G., Hafele, K. H., and Lowner, M.-O. (2013), Enhanced LOD concepts for virtual 3D city models, ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. II-2/W1, pp. 51-61. https://doi.org/10.5194/isprsannals-II-2-W1-51-2013
  3. Jorge, C. (2018), Defining seamntic levels of detail for indoor maps, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. IV-4/W7, pp. 27-34. https://doi.org/10.5194/isprs-annals-IV-4-W7-27-2018
  4. Kang, H. and Lee, J. (2014), A study on the LOD model for applications based on indoor space data, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 32, No. 2, pp. 143-151. (in Korean with English abstract) https://doi.org/10.7848/ksgpc.2014.32.2.143
  5. Kemec, S., Zlatanova, S., and Duzgu, S. (2012), A new LoD definition hierarchy for 3D city models used for natural disaster risk communication tool, International Conference on Cartography and GIS, Vol. 2, Albena, Bulgaria, pp. 17-28
  6. Kim, M., Jang, M. Hong, S., and Kim, J. (2015), Practices on BIM-based indoor spatial information implementation and location-based services, Korean Institute of Building Information modeling, Vol. 5, No. 3, pp. 41-50. (in Korean with English abstract)
  7. Lowner, M.-O., Benner, J., Groger, G., and Hafele, K.-H. (2013), New concepts for structuring 3D city models - an extended level of detail concept for CityGML buildings, Computational Science and Its Applications - ICCSA 2013, Ho Chi Minh City, Vietnam, pp. 466-480.
  8. OGC (2012), City geography markup language (CityGML) encoding standard, Open Geospatial Consortium, http://www.opengis.net/spec/citygml/2.0 (last date accessed: 15 November. 2018).
  9. Park, J. and Lee, J. (2017), Establishing required LOD and positioning accuracy for indoor spatial information applications in public administrative works, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 35, No. 2, pp. 107-116.

Cited by

  1. 무인항공 경사사진을 이용한 3차원 모델 생성 및 정확도 평가 vol.20, pp.3, 2019, https://doi.org/10.5762/kais.2019.20.3.587
  2. MMS와 UAV에 의한 수치표고모델의 정확도 및 특성 비교 vol.20, pp.11, 2019, https://doi.org/10.5762/kais.2019.20.11.13