DOI QR코드

DOI QR Code

NORMAL WEIGHTED BERGMAN TYPE OPERATORS ON MIXED NORM SPACES OVER THE BALL IN ℂn

  • Avetisyan, Karen L. (Faculty of Mathematics and Mechanics Yerevan State University) ;
  • Petrosyan, Albert I. (Faculty of Mathematics and Mechanics Yerevan State University)
  • 투고 : 2017.03.19
  • 심사 : 2017.12.29
  • 발행 : 2018.03.01

초록

The paper studies some new ${\mathbb{C}}^n$-generalizations of Bergman type operators introduced by Shields and Williams depending on a normal pair of weight functions. We find the values of parameter ${\beta}$ for which these operators are bounded on mixed norm spaces L(p, q, ${\beta}$) over the unit ball in ${\mathbb{C}}^n$. Moreover, these operators are bounded projections as well, and the images of L(p, q, ${\beta}$) under the projections are found.

키워드

참고문헌

  1. A. Aleman and A. G. Siskakis, Integration operators on Bergman spaces, Indiana Univ. Math. J. 46 (1997), no. 2, 337-356.
  2. K. L. Avetisyan, Continuous inclusions and Bergman type operators in n-harmonic mixed norm spaces on the polydisc, J. Math. Anal. Appl. 291 (2004), no. 2, 727-740. https://doi.org/10.1016/j.jmaa.2003.11.039
  3. K. L. Avetisyan and N. T. Gapoyan, Bergman type operators on mixed norm spaces over the ball in $\mathbb{C}^n$, J. Contemp. Math. Anal. 51 (2016), no. 5, 242-248; translated from Izv. Nats. Akad. Nauk Armenii Mat. 51 (2016), no. 5, 3-12. https://doi.org/10.3103/S1068362316050058
  4. D. Bekolle, Inegalites a poids pour le projecteur de Bergman dans la boule unite de $\mathbb{C}^n$, Studia Math. 71 (1981/82), no. 3, 305-323. https://doi.org/10.4064/sm-71-3-305-323
  5. D. Bekolle and A. Bonami, Inegalites a poids pour le noyau de Bergman, C. R. Acad. Sci. Paris Ser. A-B 286 (1978), no. 18, A775-A778.
  6. A. E. Djrbashian and F. A. Shamoian, Topics in the theory of $A^p_{\alpha}$ spaces, Teubner-Texte zur Math. 105, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1988.
  7. P. Duren and A. Schuster, Bergman Spaces, Mathematical Surveys and Monographs, 100, American Mathematical Society, Providence, RI, 2004.
  8. T. M. Flett, The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl. 38 (1972), 746-765. https://doi.org/10.1016/0022-247X(72)90081-9
  9. G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals. II, Math. Z. 34 (1932), no. 1, 403-439. https://doi.org/10.1007/BF01180596
  10. G. H. Hardy and J. E. Littlewood, Theorems concerning mean values of analytic or harmonic functions, Quart. J. Math., Oxford Ser. 12 (1941), 221-256.
  11. H. Hedenmalm, B. Korenblum, and K. Zhu, Theory of Bergman Spaces, Graduate Texts in Mathematics, 199, Springer-Verlag, New York, 2000.
  12. M. Jevtic, Bounded projections and duality in mixed-norm spaces of analytic functions, Complex Variables Theory Appl. 8 (1987), no. 3-4, 293-301. https://doi.org/10.1080/17476938708814239
  13. E. G. Kwon, Quantities equivalent to the norm of a weighted Bergman space, J. Math. Anal. Appl. 338 (2008), no. 2, 758-770. https://doi.org/10.1016/j.jmaa.2007.05.060
  14. J. A. Pelaez and J. Rattya, Weighted Bergman spaces induced by rapidly increasing weights, Mem. Amer. Math. Soc. 227 (2014), no. 1066, vi+124 pp.
  15. J. A. Pelaez and J. Rattya, On the boundedness of Bergman projection, in Advanced courses of mathematical analysis VI, 113-132, World Sci. Publ., Hackensack, NJ, 2014.
  16. A. I. Petrosyan, Bounded projectors in spaces of functions holomorphic in the unit ball, J. Contemp. Math. Anal. 46 (2011), no. 5, 264-272; translated from Izv. Nats. Akad. Nauk Armenii Mat. 46 (2011), no. 5, 53-64. https://doi.org/10.3103/S1068362311050049
  17. A. I. Petrosyan and N. T. Gapoyan, Bounded projectors on $\mathbb{L}^p$ spaces in the unit ball, Proc. Yerevan State Univ., Phys. Math. Sci. (2013), no. 1, 17-23.
  18. G. Ren and J. Shi, Bergman type operator on mixed norm spaces with applications, Chinese Ann. Math. Ser. B 18 (1997), no. 3, 265-276.
  19. W. Rudin, Function Theory in the Unit Ball of $\mathbb{C}^n$, Grundlehren der Mathematischen Wissenschaften, 241, Springer-Verlag, New York, 1980.
  20. J. Shi and G. Ren, Boundedness of the Cesaro operator on mixed norm spaces, Proc. Amer. Math. Soc. 126 (1998), no. 12, 3553-3560. https://doi.org/10.1090/S0002-9939-98-04514-6
  21. A. L. Shields and D. L. Williams, Bonded projections, duality, and multipliers in spaces of analytic functions, Trans. Amer. Math. Soc. 162 (1971), 287-302.
  22. A. G. Siskakis, Weighted integrals of analytic functions, Acta Sci. Math. (Szeged) 66 (2000), no. 3-4, 651-664.
  23. E. M. Stein and G.Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, NJ, 1971.
  24. K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Graduate Texts in Mathematics, 226, Springer-Verlag, New York, 2005.