참고문헌
- A. Aleman and A. G. Siskakis, Integration operators on Bergman spaces, Indiana Univ. Math. J. 46 (1997), no. 2, 337-356.
- K. L. Avetisyan, Continuous inclusions and Bergman type operators in n-harmonic mixed norm spaces on the polydisc, J. Math. Anal. Appl. 291 (2004), no. 2, 727-740. https://doi.org/10.1016/j.jmaa.2003.11.039
-
K. L. Avetisyan and N. T. Gapoyan, Bergman type operators on mixed norm spaces over the ball in
$\mathbb{C}^n$ , J. Contemp. Math. Anal. 51 (2016), no. 5, 242-248; translated from Izv. Nats. Akad. Nauk Armenii Mat. 51 (2016), no. 5, 3-12. https://doi.org/10.3103/S1068362316050058 -
D. Bekolle, Inegalites a poids pour le projecteur de Bergman dans la boule unite de
$\mathbb{C}^n$ , Studia Math. 71 (1981/82), no. 3, 305-323. https://doi.org/10.4064/sm-71-3-305-323 - D. Bekolle and A. Bonami, Inegalites a poids pour le noyau de Bergman, C. R. Acad. Sci. Paris Ser. A-B 286 (1978), no. 18, A775-A778.
-
A. E. Djrbashian and F. A. Shamoian, Topics in the theory of
$A^p_{\alpha}$ spaces, Teubner-Texte zur Math. 105, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1988. - P. Duren and A. Schuster, Bergman Spaces, Mathematical Surveys and Monographs, 100, American Mathematical Society, Providence, RI, 2004.
- T. M. Flett, The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl. 38 (1972), 746-765. https://doi.org/10.1016/0022-247X(72)90081-9
- G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals. II, Math. Z. 34 (1932), no. 1, 403-439. https://doi.org/10.1007/BF01180596
- G. H. Hardy and J. E. Littlewood, Theorems concerning mean values of analytic or harmonic functions, Quart. J. Math., Oxford Ser. 12 (1941), 221-256.
- H. Hedenmalm, B. Korenblum, and K. Zhu, Theory of Bergman Spaces, Graduate Texts in Mathematics, 199, Springer-Verlag, New York, 2000.
- M. Jevtic, Bounded projections and duality in mixed-norm spaces of analytic functions, Complex Variables Theory Appl. 8 (1987), no. 3-4, 293-301. https://doi.org/10.1080/17476938708814239
- E. G. Kwon, Quantities equivalent to the norm of a weighted Bergman space, J. Math. Anal. Appl. 338 (2008), no. 2, 758-770. https://doi.org/10.1016/j.jmaa.2007.05.060
- J. A. Pelaez and J. Rattya, Weighted Bergman spaces induced by rapidly increasing weights, Mem. Amer. Math. Soc. 227 (2014), no. 1066, vi+124 pp.
- J. A. Pelaez and J. Rattya, On the boundedness of Bergman projection, in Advanced courses of mathematical analysis VI, 113-132, World Sci. Publ., Hackensack, NJ, 2014.
- A. I. Petrosyan, Bounded projectors in spaces of functions holomorphic in the unit ball, J. Contemp. Math. Anal. 46 (2011), no. 5, 264-272; translated from Izv. Nats. Akad. Nauk Armenii Mat. 46 (2011), no. 5, 53-64. https://doi.org/10.3103/S1068362311050049
-
A. I. Petrosyan and N. T. Gapoyan, Bounded projectors on
$\mathbb{L}^p$ spaces in the unit ball, Proc. Yerevan State Univ., Phys. Math. Sci. (2013), no. 1, 17-23. - G. Ren and J. Shi, Bergman type operator on mixed norm spaces with applications, Chinese Ann. Math. Ser. B 18 (1997), no. 3, 265-276.
-
W. Rudin, Function Theory in the Unit Ball of
$\mathbb{C}^n$ , Grundlehren der Mathematischen Wissenschaften, 241, Springer-Verlag, New York, 1980. - J. Shi and G. Ren, Boundedness of the Cesaro operator on mixed norm spaces, Proc. Amer. Math. Soc. 126 (1998), no. 12, 3553-3560. https://doi.org/10.1090/S0002-9939-98-04514-6
- A. L. Shields and D. L. Williams, Bonded projections, duality, and multipliers in spaces of analytic functions, Trans. Amer. Math. Soc. 162 (1971), 287-302.
- A. G. Siskakis, Weighted integrals of analytic functions, Acta Sci. Math. (Szeged) 66 (2000), no. 3-4, 651-664.
- E. M. Stein and G.Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, NJ, 1971.
- K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Graduate Texts in Mathematics, 226, Springer-Verlag, New York, 2005.