DOI QR코드

DOI QR Code

A Molecular Approach to Mitophagy and Mitochondrial Dynamics

  • Yoo, Seung-Min (Global Research Laboratory, School of Biological Sciences, Seoul National University) ;
  • Jung, Yong-Keun (Global Research Laboratory, School of Biological Sciences, Seoul National University)
  • Received : 2017.10.27
  • Accepted : 2017.11.23
  • Published : 2018.01.31

Abstract

Mitochondrial quality control systems are essential for the maintenance of functional mitochondria. At the organelle level, they include mitochondrial biogenesis, fusion and fission, to compensate for mitochondrial function, and mitophagy, for degrading damaged mitochondria. Specifically, in mitophagy, the target mitochondria are recognized by the autophagosomes and delivered to the lysosome for degradation. In this review, we describe the mechanisms of mitophagy and the factors that play an important role in this process. In particular, we focus on the roles of mitophagy adapters and receptors in the recognition of damaged mitochondria by autophagosomes. In addition, we also address a functional association of mitophagy with mitochondrial dynamics through the interaction of mitophagy adaptor and receptor proteins with mitochondrial fusion and fission proteins.

Keywords

E1BJB7_2018_v41n1_18_f0001.png 이미지

Fig. 1. Mitochondrial quality control. At the protein level, DNA repair proteins (mitochondrial DNA polymerase gamma) repair mitochon-drial DNA; Chaperones import nuclear-encoded mitochondrial proteins into the mitochondria and correctly fold misfolded proteins inthe matrix; Mitochondrial outer membrane proteins are ubiquitinated by MARCH5 and extracted by P97 to be degraded by the pro-teasome; Proteases in the mitochondrial matrix and inter membrane space degrade damaged proteins; Antioxidants reduce reactiveoxygen species to protect mitochondria. At the organelle level, mitochondria biogenesis occurs upon specific signaling; the mitochon-drial network changes mitochondrial shape through fusion and fission to accommodate metabolic requirement; Mitofusin 1/2 andOPA1 mediate fusion in the mitochondrial outer and inner membrane, respectively. MitoPLD converts cardiolipin to phosphatic acidinducing the fusion of mitochondria. When mitochondrial fission occurs, Drp1 binds to its receptors (MFF, MID49, MID51 and FIS1) toform Drp1 oligomers and tightens mitochondria to divide it. Also, increase of short form OPA1 induces mitochondrial fission. Damagedmitochondria are recognized by autophagosome, isolated and then fused with the lysosome to form an autolysosome and finally de-graded.

E1BJB7_2018_v41n1_18_f0002.png 이미지

Fig. 2. Mitochondria recognition by LC3 adaptors and receptors during mitophagy. (A) In healthy mitochondria, PINK1 is targeted to themitochondria and is cleaved by the proteases PARL and MPP in the matrix and mitochondrial inner membrane, respectively. CleavedPINK1 is degraded in the cytosol through the proteasome. (B) In damaged mitochondria, PINK1 accumulates on the mitochondrial outermembrane and is activated through autophosphorylation. Activated PINK1 phosphorylates ubiquitin on its substrates. Phosphorylatedubiquitin-substrates interact with OPTN or NDP52 to subsequently recruit initiation factors of autophagy or Parkin, an E3 ubiquitin ligase,which is then activated by PINK1 for polyubiquitination. K63-linked polyubiquitinated substrates are recognized by five LC3 adapters(p62, NDP52, OPTN, TAX1BP1 and NBR1) to interact with LC3 on autophagosomes through the LIR motif. TBK1 phosphorylates OPTNto facilitate the recognition by LC3 and NIX is polyubiquitinated to be recognized by LC3 through NBR1. K27-linked Miro and K48-linkedVDAC1 and MFN 1 and 2 are degraded by proteasome. The ubiquitin-independent LC3 adapters CHDH and TBC1D15 recognize p62and FIS1, respectively. (C) Under hypoxic condition, homodimerized BNIP3 is phosphorylated at Ser17 and 24, and NIX is phosphory-lated at Ser81 to facilitate the interaction with LC3. FUNDC1 is dephosphorylated at Ser13 by PGAM5 and phosphorylated at Ser17 byULK1. Phosphorylation of Ser272 in BCL2L13 enhances the interaction with LC3. PHB2 in the mitochondrial inner membrane interactswith LC3 when PHB2 LIR is exposed to the cytosol following Parkin-mediated rupture of the mitochondrial outer membrane. Cardiolipintranslocates to the mitochondrial outer membrane and promotes mitophagy through direct interaction with LC3.

References

  1. Anton, Z., Landajuela, A., Hervas, J.H., Montes, L.R., Hernandez-Tiedra, S., Velasco, G., Goni, F.M., and Alonso, A. (2016). Human Atg8-cardiolipin interactions in mitophagy: Specific properties of LC3B, GABARAPL2 and GABARAP. Autophagy 12, 2386-2403. https://doi.org/10.1080/15548627.2016.1240856
  2. Ashrafi, G., Schlehe, J.S., LaVoie, M.J., and Schwarz, T.L. (2014). Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin. J. Cell Biol. 206, 655-670. https://doi.org/10.1083/jcb.201401070
  3. Ban, T., Ishihara, T., Kohno, H., Saita, S., Ichimura, A., Maenaka, K., Oka, T., Mihara, K., and Ishihara, N. (2017). Molecular basis of selective mitochondrial fusion by heterotypic action between OPA1 and cardiolipin. Nat. Cell Biol. 19, 856-863. https://doi.org/10.1038/ncb3560
  4. Bhujabal, Z., Birgisdottir, A.B., Sjottem, E., Brenne, H.B., Overvatn, A., Habisov, S., Kirkin, V., Lamark, T., and Johansen, T. (2017). FKBP8 recruits LC3A to mediate Parkin-independent mitophagy. EMBO Rep. 18, 947-961. https://doi.org/10.15252/embr.201643147
  5. Bingol, B., Tea, J.S., Phu, L., Reichelt, M., Bakalarski, C.E., Song, Q., Foreman, O., Kirkpatrick, D.S., and Sheng, M. (2014). The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature 510, 370-375. https://doi.org/10.1038/nature13418
  6. Bragoszewski, P., Turek, M., and Chacinska, A. (2017). Control of mitochondrial biogenesis and function by the ubiquitin-proteasome system. Open Biol 7.
  7. Bravo-San Pedro, J.M., Kroemer, G., and Galluzzi, L. (2017). Autophagy and mitophagy in cardiovascular disease. Circ. Res. 120, 1812-1824. https://doi.org/10.1161/CIRCRESAHA.117.311082
  8. Cenini, G., and Voos, W. (2016). Role of mitochondrial protein quality control in oxidative stress-induced neurodegenerative diseases. Curr. Alzheimer Res. 13, 164-173. https://doi.org/10.2174/1567205012666150921103213
  9. Chan, N.C., Salazar, A.M., Pham, A.H., Sweredoski, M.J., Kolawa, N.J., Graham, R.L., Hess, S., and Chan, D.C. (2011). Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum. Mol. Genet. 20, 1726-1737. https://doi.org/10.1093/hmg/ddr048
  10. Chen, G., Han, Z., Feng, D., Chen, Y., Chen, L., Wu, H., Huang, L., Zhou, C., Cai, X., Fu, C., et al. (2014). A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptormediated mitophagy. Mol. Cell 54, 362-377. https://doi.org/10.1016/j.molcel.2014.02.034
  11. Chen, Z., Liu, L., Cheng, Q., Li, Y., Wu, H., Zhang, W., Wang, Y., Sehgal, S.A., Siraj, S., Wang, X., et al. (2017). Mitochondrial E3 ligase MARCH5 regulates FUNDC1 to fine-tune hypoxic mitophagy. EMBO Rep. 18, 495-509. https://doi.org/10.15252/embr.201643309
  12. Chu, C.T., Ji, J., Dagda, R.K., Jiang, J.F., Tyurina, Y.Y., Kapralov, A.A., Tyurin, V.A., Yanamala, N., Shrivastava, I.H., Mohammadyani, D., et al. (2013). Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat. Cell Biol. 15, 1197-U1168. https://doi.org/10.1038/ncb2837
  13. Cloonan, S.M., and Choi, A.M. (2016). Mitochondria in lung disease. J. Clin. Invest. 126, 809-820. https://doi.org/10.1172/JCI81113
  14. Drake, L.E., Springer, M.Z., Poole, L.P., Kim, C.J., and Macleod, K.F. (2017). Expanding perspectives on the significance of mitophagy in cancer. Semin Cancer Biol. 47, 110-124. https://doi.org/10.1016/j.semcancer.2017.04.008
  15. Esteban-Martinez, L., Sierra-Filardi, E., McGreal, R.S., Salazar-Roa, M., Marino, G., Seco, E., Durand, S., Enot, D., Grana, O., Malumbres, M., et al. (2017). Programmed mitophagy is essential for the glycolytic switch during cell differentiation. EMBO J. 36, 1688-1706. https://doi.org/10.15252/embj.201695916
  16. Galluzzi, L., Kepp, O., Trojel-Hansen, C., and Kroemer, G. (2012). Mitochondrial control of cellular life, stress, and death. Circ. Res. 111, 1198-1207. https://doi.org/10.1161/CIRCRESAHA.112.268946
  17. Galluzzi, L., Baehrecke, E.H., Ballabio, A., Boya, P., Bravo-San Pedro, J.M., Cecconi, F., Choi, A.M., Chu, C.T., Codogno, P., Colombo, M.I., et al. (2017). Molecular definitions of autophagy and related processes. EMBO J. 36, 1811-1836. https://doi.org/10.15252/embj.201796697
  18. Gao, F., Chen, D., Si, J.M., Hu, Q.S., Qin, Z.H., Fang, M., and Wang, G.H. (2015). The mitochondrial protein BNIP3L is the substrate of PARK2 and mediates mitophagy in PINK1/PARK2 pathway. Hum. Mol. Genet. 24, 2528-2538. https://doi.org/10.1093/hmg/ddv017
  19. Gottlieb, R.A., and Stotland, A. (2015). MitoTimer: a novel protein for monitoring mitochondrial turnover in the heart. J. Mol. Med. (Berl). 93, 271-278. https://doi.org/10.1007/s00109-014-1230-6
  20. Hammerling, B.C., and Gustafsson, A.B. (2014). Mitochondrial quality control in the myocardium: cooperation between protein degradation and mitophagy. J. Mol. Cell Cardiol. 75, 122-130. https://doi.org/10.1016/j.yjmcc.2014.07.013
  21. Hanna, R.A., Quinsay, M.N., Orogo, A.M., Giang, K., Rikka, S., and Gustafsson, A.B. (2012). Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. J. Biol. Chem. 287, 19094-19104. https://doi.org/10.1074/jbc.M111.322933
  22. Heo, J.M., Ordureau, A., Paulo, J.A., Rinehart, J., and Harper, J.W. (2015). The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol. Cell 60, 7-20. https://doi.org/10.1016/j.molcel.2015.08.016
  23. Hirota, Y., Yamashita, S., Kurihara, Y., Jin, X.L., Aihara, M., Saigusa, T., Kang, D.C., and Kanki, T. (2015). Mitophagy is primarily due to alternative autophagy and requires the MAPK1 and MAPK14 signaling pathways. Autophagy 11, 332-343. https://doi.org/10.1080/15548627.2015.1023047
  24. Landes, T., Emorine, L.J., Courilleau, D., Rojo, M., Belenguer, P., and Arnaune-Pelloquin, L. (2010). The BH3-only Bnip3 binds to the dynamin Opa1 to promote mitochondrial fragmentation and apoptosis by distinct mechanisms. EMBO Rep. 11, 459-465. https://doi.org/10.1038/embor.2010.50
  25. Lazarou, M. (2015). Keeping the immune system in check: a role for mitophagy. Immunol. Cell Biol. 93, 3-10. https://doi.org/10.1038/icb.2014.75
  26. Lazarou, M., Sliter, D.A., Kane, L.A., Sarraf, S.A., Wang, C., Burman, J.L., Sideris, D.P., Fogel, A.I., and Youle, R.J. (2015). The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524, 309-314. https://doi.org/10.1038/nature14893
  27. Lee, Y., Lee, H.Y., Hanna, R.A., and Gustafsson, A.B. (2011). Mitochondrial autophagy by Bnip3 involves Drp1-mediated mitochondrial fission and recruitment of Parkin in cardiac myocytes. Am. J. Physiol-Heart C. 301, H1924-H1931. https://doi.org/10.1152/ajpheart.00368.2011
  28. Lemasters, J.J. (2014). Variants of mitochondrial autophagy: Types 1 and 2 mitophagy and micromitophagy (Type 3). Redox. Biol. 2, 749-754. https://doi.org/10.1016/j.redox.2014.06.004
  29. Liu, L., Feng, D., Chen, G., Chen, M., Zheng, Q., Song, P., Ma, Q., Zhu, C., Wang, R., Qi, W., et al. (2012). Mitochondrial outermembrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat. Cell Biol. 14, 177-185. https://doi.org/10.1038/ncb2422
  30. Magrane, J., Cortez, C., Gan, W.B., and Manfredi, G. (2014). Abnormal mitochondrial transport and morphology are common pathological denominators in SOD1 and TDP43 ALS mouse models. Hum. Mol. Genet. 23, 1413-1424. https://doi.org/10.1093/hmg/ddt528
  31. Mao, K., Wang, K., Zhao, M., Xu, T., and Klionsky, D.J. (2011). Two MAPK-signaling pathways are required for mitophagy in Saccharomyces cerevisiae. J. Cell Biol. 193, 755-767. https://doi.org/10.1083/jcb.201102092
  32. Martin-Maestro, P., Gargini, R., Perry, G., Avila, J., and Garcia-Escudero, V. (2016). PARK2 enhancement is able to compensate mitophagy alterations found in sporadic Alzheimer's disease. Hum. Mol. Genet. 25, 792-806. https://doi.org/10.1093/hmg/ddv616
  33. Martinez-Vicente, M., Talloczy, Z., Wong, E., Tang, G.M., Koga, H., Kaushik, S., de Vries, R., Arias, E., Harris, S., Sulzer, D., et al. (2010). Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease. Nat. Neurosci. 13, 567-U574. https://doi.org/10.1038/nn.2528
  34. Matsuda, N., Sato, S., Shiba, K., Okatsu, K., Saisho, K., Gautier, C.A., Sou, Y.S., Saiki, S., Kawajiri, S., Sato, F., et al. (2010). PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol. 189, 211-221. https://doi.org/10.1083/jcb.200910140
  35. Matsumoto, G., Shimogori, T., Hattori, N., and Nukina, N. (2015). TBK1 controls autophagosomal engulfment of polyubiquitinated mitochondria through p62/SQSTM1 phosphorylation. Hum. Mol. Genet. 24, 4429-4442. https://doi.org/10.1093/hmg/ddv179
  36. Merkwirth, C., Dargazanli, S., Tatsuta, T., Geimer, S., Lower, B., Wunderlich, F.T., von Kleist-Retzow, J.C., Waisman, A., Westermann, B., and Langer, T. (2008). Prohibitins control cell proliferation and apoptosis by regulating OPA1-dependent cristae morphogenesis in mitochondria. Gene Dev. 22, 476-488. https://doi.org/10.1101/gad.460708
  37. Miettinen, T.P., and Bjorklund, M. (2017). Mitochondrial Function and Cell Size: An Allometric Relationship. Trends Cell Biol. 27, 393-402. https://doi.org/10.1016/j.tcb.2017.02.006
  38. Mizumura, K., Cloonan, S.M., Nakahira, K., Bhashyam, A.R., Cervo, M., Kitada, T., Glass, K., Owen, C.A., Mahmood, A., Washko, G.R., et al. (2014). Mitophagy-dependent necroptosis contributes to the pathogenesis of COPD. J. Clin. Invest. 124, 3987-4003. https://doi.org/10.1172/JCI74985
  39. Moore, A.S., and Holzbaur, E.L. (2016). Dynamic recruitment and activation of ALS-associated TBK1 with its target optineurin are required for efficient mitophagy. Proc. Natl. Acad. Sci. USA 113, E3349-3358. https://doi.org/10.1073/pnas.1523810113
  40. Moore, A.S., and Holzbaur, E.L. (2016). Spatiotemporal dynamics of autophagy receptors in selective mitophagy. Autophagy 12, 1956-1957. https://doi.org/10.1080/15548627.2016.1212788
  41. Murakawa, T., Yamaguchi, O., Hashimoto, A., Hikoso, S., Takeda, T., Oka, T., Yasui, H., Ueda, H., Akazawa, Y., Nakayama, H., et al. (2015). Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation. Nat. Commun. 6, 7527. https://doi.org/10.1038/ncomms8527
  42. Nah, J., Yuan, J., and Jung, Y.K. (2015). Autophagy in neurodegenerative diseases: from mechanism to therapeutic approach. Mol. Cells 38, 381-389. https://doi.org/10.14348/molcells.2015.0034
  43. Narendra, D., Tanaka, A., Suen, D.F., and Youle, R.J. (2008). Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183, 795-803. https://doi.org/10.1083/jcb.200809125
  44. Nguyen, T.N., Padman, B.S., and Lazarou, M. (2016). Deciphering the Molecular Signals of PINK1/Parkin Mitophagy. Trends Cell Biol. 26, 733-744. https://doi.org/10.1016/j.tcb.2016.05.008
  45. Novak, I., Kirkin, V., McEwan, D.G., Zhang, J., Wild, P., Rozenknop, A., Rogov, V., Lohr, F., Popovic, D., Occhipinti, A., et al. (2010). Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep. 11, 45-51. https://doi.org/10.1038/embor.2009.256
  46. Parikh, S.M., Yang, Y., He, L.Y., Tang, C.Y., Zhan, M., and Dong, Z. (2015). Mitochondrial Function and Disturbances in the Septic Kidney. Semin. Nephrol. 35, 108-119. https://doi.org/10.1016/j.semnephrol.2015.01.011
  47. Park, S., Choi, S.G., Yoo, S.M., Nah, J., Jeong, E., Kim, H., and Jung, Y.K. (2015). Pyruvate stimulates mitophagy via PINK1 stabilization. Cell Signal. 27, 1824-1830. https://doi.org/10.1016/j.cellsig.2015.05.020
  48. Park, S., Choi, S.G., Yoo, S.M., Son, J.H., and Jung, Y.K. (2014). Choline dehydrogenase interacts with SQSTM1/p62 to recruit LC3 and stimulate mitophagy. Autophagy 10, 1906-1920. https://doi.org/10.4161/auto.32177
  49. Pickrell, A.M., and Youle, R.J. (2015). The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease. Neuron 85, 257-273. https://doi.org/10.1016/j.neuron.2014.12.007
  50. Rambold, A.S., and Pearce, E.L. (2017). Mitochondrial dynamics at the interface of immune cell metabolism and function. Trends Immunol. pii: S1471-4906(17)30170-9.
  51. Richter, B., Sliter, D.A., Herhaus, L., Stolz, A., Wang, C.X., Beli, P., Zaffagnini, G., Wild, P., Martens, S., Wagner, S.A., et al. (2016). Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proc. Natl. Acad. Sci. USA 113, 4039-4044. https://doi.org/10.1073/pnas.1523926113
  52. Rodolfo, C., Campello, S., and Cecconi, F. (2017). Mitophagy in neurodegenerative diseases. Neurochem. Int. pii: S0197-0186(17)30087-6.
  53. Rojansky, R., Cha, M.Y., and Chan, D.C. (2016). Elimination of paternal mitochondria in mouse embryos occurs through autophagic degradation dependent on PARKIN and MUL1. Elife 5, pii: e17896.
  54. Saita, S., Shirane, M., and Nakayama, K.I. (2013). Selective escape of proteins from the mitochondria during mitophagy. Nat. Commun. 4, 1410. https://doi.org/10.1038/ncomms2400
  55. Sandoval, H., Thiagarajan, P., Dasgupta, S.K., Schumacher, A., Prchal, J.T., Chen, M., and Wang, J. (2008). Essential role for Nix in autophagic maturation of erythroid cells. Nature 454, 232-235. https://doi.org/10.1038/nature07006
  56. Sarraf, S.A., Raman, M., Guarani-Pereira, V., Sowa, M.E., Huttlin, E.L., Gygi, S.P., and Harper, J.W. (2013). Landscape of the PARKINdependent ubiquitylome in response to mitochondrial depolarization. Nature 496, 372-376. https://doi.org/10.1038/nature12043
  57. Scheibye-Knudsen, M., Fang, E.F., Croteau, D.L., Wilson, D.M., 3rd and Bohr, V.A. (2015). Protecting the mitochondrial powerhouse. Trends Cell Biol. 25, 158-170. https://doi.org/10.1016/j.tcb.2014.11.002
  58. Shi, R.Y., Zhu, S.H., Li, V., Gibson, S.B., Xu, X.S., and Kong, J.M. (2014). BNIP3 interacting with LC3 triggers excessive mitophagy in delayed neuronal death in stroke. CNS Neurosci. Ther. 20, 1045-1055. https://doi.org/10.1111/cns.12325
  59. Shirihai, O.S., Song, M.S., and Dorn, G.W. (2015). How mitochondrial dynamism orchestrates mitophagy. Circ. Res. 116, 1835-1849. https://doi.org/10.1161/CIRCRESAHA.116.306374
  60. Sinha, R.A., and Yen, P.M. (2016). Thyroid hormone-mediated autophagy and mitochondrial turnover in NAFLD. Cell Biosci 6.
  61. Smith, B.K., Marcinko, K., Desjardins, E.M., Lally, J.S., Ford, R.J., and Steinberg, G.R. (2016). Treatment of nonalcoholic fatty liver disease: role of AMPK. Am. J. Physiol. Endocrinol. Metab. 311, E730-E740. https://doi.org/10.1152/ajpendo.00225.2016
  62. Sowter, H.M., Ratcliffe, P.J., Watson, P., Greenberg, A.H., and Harris, A.L. (2001). HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Res. 61, 6669-6673.
  63. Suliman, H.B., and Piantadosi, C.A. (2016). Mitochondrial quality control as a therapeutic target. Pharmacol Rev. 68, 20-48.
  64. Suomalainen, A., and Battersby, B.J. (2017). Mitochondrial diseases: the contribution of organelle stress responses to pathology. Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2017.66. [Epub ahead of print]
  65. Szargel, R., Shani, V., Abd Elghani, F., Mekies, L.N., Liani, E., Rott, R., and Engelender, S. (2016). The PINK1, synphilin-1 and SIAH-1 complex constitutes a novel mitophagy pathway. Hum. Mol. Genet. 25, 3476-3490. https://doi.org/10.1093/hmg/ddw189
  66. Tanaka, A., Cleland, M.M., Xu, S., Narendra, D.P., Suen, D.F., Karbowski, M., and Youle, R.J. (2010). Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol. 191, 1367-1380. https://doi.org/10.1083/jcb.201007013
  67. Trotta, A.P., and Chipuk, J.E. (2017). Mitochondrial dynamics as regulators of cancer biology. Cell Mol. Life Sci. 74, 1999-2017. https://doi.org/10.1007/s00018-016-2451-3
  68. Vazquez-Martin, A., Van den Haute, C., Cufi, S., Corominas-Faja, B., Cuyas, E., Lopez-Bonet, E., Rodriguez-Gallego, E., Fernandez-Arroyo, S., Joven, J., Baekelandt, V., et al. (2016). Mitophagy-driven mitochondrial rejuvenation regulates stem cell fate. Aging (Albany NY). 8, 1330-1352.
  69. Vazquez, F., Lim, J.H., Chim, H., Bhalla, K., Girnun, G., Pierce, K., Clish, C.B., Granter, S.R., Widlund, H.R., Spiegelman, B.M., et al. (2013). PGC1 alpha expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. Cancer Cell 23, 287-301. https://doi.org/10.1016/j.ccr.2012.11.020
  70. Wai, T., and Langer, T. (2016). Mitochondrial dynamics and metabolic regulation. Trends Endocrinol. Metab. 27, 105-117. https://doi.org/10.1016/j.tem.2015.12.001
  71. Wang, C.W., and Klionsky, D.J. (2003). The molecular mechanism of autophagy. Mol. Med. 9, 65-76.
  72. Wei, Y.J., Chiang, W.C., Sumpter, R., Mishra, P., and Levine, B. (2017). Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor. Cell 168, 224-238. https://doi.org/10.1016/j.cell.2016.11.042
  73. Wong, Y.C., and Holzbaur, E.L.F. (2014). The regulation of autophagosome dynamics by huntingtin and HAP1 is disrupted by expression of mutant huntingtin, leading to defective cargo degradation. J. Neurosci. 34, 1293-1305. https://doi.org/10.1523/JNEUROSCI.1870-13.2014
  74. Wrighton, K.H. (2016). Metabolism: Mitophagy turns beige adipocytes white. Nat. Rev. Mol. Cell Biol. 17, 607. https://doi.org/10.1038/nrm.2016.125
  75. Wu, W.X., Lin, C.X., Wu, K., Jiang, L., Wang, X.J., Li, W., Zhuang, H.X., Zhang, X.L., Chen, H., Li, S.P., et al. (2016). FUNDC1 regulates mitochondrial dynamics at the ER-mitochondrial contact site under hypoxic conditions. EMBO J. 35, 1368-1384. https://doi.org/10.15252/embj.201593102
  76. Yamano, K., Fogel, A.I., Wang, C., van der Bliek, A.M., and Youle, R.J. (2014). Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy. Elife 3, e01612.
  77. Yamashita, S., and Kanki, T. (2017). How autophagy eats large mitochondria: Autophagosome formation coupled with mitochondrial fragmentation. Autophagy 13, 980-981. https://doi.org/10.1080/15548627.2017.1291113
  78. Ye, X., Sun, X., Starovoytov, V., and Cai, Q. (2015). Parkin-mediated mitophagy in mutant hAPP neurons and Alzheimer's disease patient brains. Hum. Mol. Genet. 24, 2938-2951. https://doi.org/10.1093/hmg/ddv056
  79. Yuan, Y., Zheng, Y., Zhang, X., Chen, Y., Wu, X., Wu, J., Shen, Z., Jiang, L., Wang, L., Yang, W., et al. (2017). BNIP3L/NIX-mediated mitophagy protects against ischemic brain injury independent of PARK2. Autophagy 13, 1754-1766. https://doi.org/10.1080/15548627.2017.1357792
  80. Zhang, T., Xue, L., Li, L., Tang, C., Wan, Z., Wang, R., Tan, J., Tan, Y., Han, H., Tian, R., et al. (2016). BNIP3 Protein Suppresses PINK1 Kinase Proteolytic Cleavage to Promote Mitophagy. J. Biol. Chem. 291, 21616-21629. https://doi.org/10.1074/jbc.M116.733410
  81. Zhang, W., Ren, H., Xu, C., Zhu, C., Wu, H., Liu, D., Wang, J., Liu, L., Li, W., Ma, Q., et al. (2016). Hypoxic mitophagy regulates mitochondrial quality and platelet activation and determines severity of I/R heart injury. Elife 5, pii: e21407.
  82. Zhong, Z., Umemura, A., Sanchez-Lopez, E., Liang, S., Shalapour, S., Wong, J., He, F., Boassa, D., Perkins, G., Ali, S.R., et al. (2016). NFkappaB restricts inflammasome activation via elimination of damaged mitochondria. Cell 164, 896-910. https://doi.org/10.1016/j.cell.2015.12.057
  83. Zhou, H., Zhu, P., Guo, J., Hu, N., Wang, S., Li, D., Hu, S., Ren, J., Cao, F., and Chen, Y. (2017). Ripk3 induces mitochondrial apoptosis via inhibition of FUNDC1 mitophagy in cardiac IR injury. Redox. Biol. 13, 498-507. https://doi.org/10.1016/j.redox.2017.07.007
  84. Zhu, Y., Massen, S., Terenzio, M., Lang, V., Chen-Lindner, S., Eils, R., Novak, I., Dikic, I., Hamacher-Brady, A., and Brady, N.R. (2013). Modulation of serines 17 and 24 in the LC3-interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis. J. Biol. Chem. 288, 1099-1113. https://doi.org/10.1074/jbc.M112.399345

Cited by

  1. Chronic Infections: A Possible Scenario for Autophagy and Senescence Cross-Talk vol.7, pp.10, 2018, https://doi.org/10.3390/cells7100162
  2. Overexpression of Optic Atrophy Type 1 Protects Retinal Ganglion Cells and Upregulates Parkin Expression in Experimental Glaucoma vol.11, pp.1662-5099, 2018, https://doi.org/10.3389/fnmol.2018.00350
  3. The Role of Mitophagy in Innate Immunity vol.9, pp.1664-3224, 2018, https://doi.org/10.3389/fimmu.2018.01283
  4. Therapeutic Potential of a Prolyl Hydroxylase Inhibitor FG-4592 for Parkinson’s Diseases in Vitro and in Vivo: Regulation of Redox Biology and Mitochondrial Function vol.10, pp.1663-4365, 2018, https://doi.org/10.3389/fnagi.2018.00121
  5. Mitochondrial Dysfunctions in Type I Endometrial Carcinoma: Exploring Their Role in Oncogenesis and Tumor Progression vol.19, pp.7, 2018, https://doi.org/10.3390/ijms19072076
  6. Contribution of Mitophagy to Cell‐Mediated Mineralization: Revisiting a 50‐Year‐Old Conundrum vol.5, pp.10, 2018, https://doi.org/10.1002/advs.201800873
  7. Introducing an expanded CAG tract into the huntingtin gene causes a wide spectrum of ultrastructural defects in cultured human cells vol.13, pp.10, 2018, https://doi.org/10.1371/journal.pone.0204735
  8. Glucocorticoid-mediated ER-mitochondria contacts reduce AMPA receptor and mitochondria trafficking into cell terminus via microtubule destabilization vol.9, pp.11, 2018, https://doi.org/10.1038/s41419-018-1172-y
  9. The Multifunctional Protein p62 and Its Mechanistic Roles in Cancers vol.19, pp.6, 2018, https://doi.org/10.2174/1568009618666181016164920
  10. Dioscin Alleviates Crystalline Silica-Induced Pulmonary Inflammation and Fibrosis through Promoting Alveolar Macrophage Autophagy vol.9, pp.7, 2018, https://doi.org/10.7150/thno.29682
  11. Resveratrol improves intestinal barrier function, alleviates mitochondrial dysfunction and induces mitophagy in diquat challenged piglets1 vol.10, pp.1, 2019, https://doi.org/10.1039/c8fo02091d
  12. Alleviation of Senescence via ATM Inhibition in Accelerated Aging Models vol.42, pp.3, 2018, https://doi.org/10.14348/molcells.2018.0352
  13. Drosophila ADCK1 is critical for maintaining mitochondrial structures and functions in the muscle vol.15, pp.5, 2018, https://doi.org/10.1371/journal.pgen.1008184
  14. Parkin Mutation Affects Clock Gene-Dependent Energy Metabolism vol.20, pp.11, 2018, https://doi.org/10.3390/ijms20112772
  15. Targeting autophagy in cardiac ischemia/reperfusion injury: A novel therapeutic strategy vol.234, pp.10, 2018, https://doi.org/10.1002/jcp.28345
  16. Mitochondria, Metabolism, and Redox Mechanisms in Psychiatric Disorders vol.31, pp.4, 2018, https://doi.org/10.1089/ars.2018.7606
  17. Mitochondria-hubs for regulating cellular biochemistry: emerging concepts and networks vol.9, pp.8, 2019, https://doi.org/10.1098/rsob.190126
  18. Radiocontrast Agent Diatrizoic Acid Induces Mitophagy and Oxidative Stress via Calcium Dysregulation vol.20, pp.17, 2018, https://doi.org/10.3390/ijms20174074
  19. A Cyclic Pentamethinium Salt Induces Cancer Cell Cytotoxicity through Mitochondrial Disintegration and Metabolic Collapse vol.20, pp.17, 2019, https://doi.org/10.3390/ijms20174208
  20. Moringin Pretreatment Inhibits the Expression of Genes Involved in Mitophagy in the Stem Cell of the Human Periodontal Ligament vol.24, pp.18, 2018, https://doi.org/10.3390/molecules24183217
  21. OPA1 overexpression ameliorates mitochondrial cristae remodeling, mitochondrial dysfunction, and neuronal apoptosis in prion diseases vol.10, pp.10, 2019, https://doi.org/10.1038/s41419-019-1953-y
  22. Diabetes aggravates renal ischemia-reperfusion injury by repressing mitochondrial function and PINK1/Parkin-mediated mitophagy vol.317, pp.4, 2018, https://doi.org/10.1152/ajprenal.00181.2019
  23. The Overcrowded Crossroads: Mitochondria, Alpha-Synuclein, and the Endo-Lysosomal System Interaction in Parkinson’s Disease vol.20, pp.21, 2018, https://doi.org/10.3390/ijms20215312
  24. Functions and Implications of Autophagy in Colon Cancer vol.8, pp.11, 2018, https://doi.org/10.3390/cells8111349
  25. Mitochondrial Perturbations Couple mTORC2 to Autophagy in C. elegans vol.29, pp.6, 2018, https://doi.org/10.1016/j.celrep.2019.09.072
  26. Inflammatory, regulatory, and autophagy co-expression modules and hub genes underlie the peripheral immune response to human intracerebral hemorrhage vol.16, pp.None, 2018, https://doi.org/10.1186/s12974-019-1433-4
  27. Primary cilia mediate mitochondrial stress responses to promote dopamine neuron survival in a Parkinson’s disease model vol.10, pp.12, 2019, https://doi.org/10.1038/s41419-019-2184-y
  28. Role of Mitophagy in Cardiovascular Disease vol.11, pp.2, 2020, https://doi.org/10.14336/ad.2019.0518
  29. Melatonin Attenuates Anoxia/Reoxygenation Injury by Inhibiting Excessive Mitophagy Through the MT2/SIRT3/FoxO3a Signaling Pathway in H9c2 Cells vol.14, pp.None, 2018, https://doi.org/10.2147/dddt.s248628
  30. Mitochondrial Quality Control: Role in Cardiac Models of Lethal Ischemia-Reperfusion Injury vol.9, pp.1, 2018, https://doi.org/10.3390/cells9010214
  31. Mitochondria: at the crossroads of regulating lung epithelial cell function in chronic obstructive pulmonary disease vol.318, pp.1, 2018, https://doi.org/10.1152/ajplung.00329.2019
  32. Gerontoxanthone I and Macluraxanthone Induce Mitophagy and Attenuate Ischemia/Reperfusion Injury vol.11, pp.None, 2020, https://doi.org/10.3389/fphar.2020.00452
  33. Mitochondrial Dynamics in Adult Cardiomyocytes and Heart Diseases vol.8, pp.None, 2018, https://doi.org/10.3389/fcell.2020.584800
  34. FKBP8 LIRL‐dependent mitochondrial fragmentation facilitates mitophagy under stress conditions vol.34, pp.2, 2020, https://doi.org/10.1096/fj.201901735r
  35. Decision between mitophagy and apoptosis by Parkin via VDAC1 ubiquitination vol.117, pp.8, 2018, https://doi.org/10.1073/pnas.1909814117
  36. Novel mitochondrion‐targeting copper(II) complex induces HK2 malfunction and inhibits glycolysis via Drp1‐mediating mitophagy in HCC vol.24, pp.5, 2018, https://doi.org/10.1111/jcmm.14971
  37. Bicalutamide Elicits Renal Damage by Causing Mitochondrial Dysfunction via ROS Damage and Upregulation of HIF-1α vol.21, pp.9, 2018, https://doi.org/10.3390/ijms21093400
  38. A new sight: topology-dependent mitophagy vol.36, pp.3, 2020, https://doi.org/10.1007/s10565-020-09534-4
  39. Cadmium induces mitophagy via AMP‐activated protein kinases activation in a PINK1/Parkin‐dependent manner in PC12 cells vol.53, pp.6, 2020, https://doi.org/10.1111/cpr.12817
  40. Systemic effects of mitochondrial stress vol.21, pp.6, 2018, https://doi.org/10.15252/embr.202050094
  41. Role of DRAM1 in mitophagy contributes to preeclampsia regulation in mice vol.22, pp.3, 2018, https://doi.org/10.3892/mmr.2020.11269
  42. How autophagy can restore proteostasis defects in multiple diseases? vol.40, pp.4, 2020, https://doi.org/10.1002/med.21662
  43. Mitochondrial damage & lipid signaling in traumatic brain injury vol.329, pp.None, 2018, https://doi.org/10.1016/j.expneurol.2020.113307
  44. Mitochondria (cross)talk with proteostatic mechanisms: Focusing on ageing and neurodegenerative diseases vol.190, pp.None, 2020, https://doi.org/10.1016/j.mad.2020.111324
  45. Mitonuclear Interactions in the Maintenance of Mitochondrial Integrity vol.10, pp.9, 2018, https://doi.org/10.3390/life10090173
  46. Increased Mitochondrial Fragmentation Mediated by Dynamin-Related Protein 1 Contributes to Hexavalent Chromium-Induced Mitochondrial Respiratory Chain Complex I-Dependent Cytotoxicity vol.8, pp.3, 2020, https://doi.org/10.3390/toxics8030050
  47. PINK1 alleviates thermal hypersensitivity in a paclitaxel-induced Drosophila model of peripheral neuropathy vol.15, pp.9, 2020, https://doi.org/10.1371/journal.pone.0239126
  48. Metabolic dysfunction in human skin: Restoration of mitochondrial integrity and metabolic output by nicotinamide (niacinamide) in primary dermal fibroblasts from older aged donors vol.19, pp.10, 2020, https://doi.org/10.1111/acel.13248
  49. Autophagy in cancer: Recent advances and future directions vol.66, pp.None, 2018, https://doi.org/10.1016/j.semcancer.2020.03.010
  50. Loss of HSPA9 induces peroxisomal degradation by increasing pexophagy vol.16, pp.11, 2018, https://doi.org/10.1080/15548627.2020.1712812
  51. Alterations in Mitochondrial Dynamic-related Genes in the Peripheral Blood of Alzheimer’s Disease Patients vol.17, pp.7, 2018, https://doi.org/10.2174/1567205017666201006162538
  52. Inhibition of Lysosomal Function Mitigates Protective Mitophagy and Augments Ceramide Nanoliposome-Induced Cell Death in Head and Neck Squamous Cell Carcinoma vol.19, pp.12, 2018, https://doi.org/10.1158/1535-7163.mct-20-0182
  53. HMGB1/RAGE axis mediates stress-induced RVLM neuroinflammation in mice via impairing mitophagy flux in microglia vol.17, pp.None, 2018, https://doi.org/10.1186/s12974-019-1673-3
  54. Mitophagy and the Brain vol.21, pp.24, 2018, https://doi.org/10.3390/ijms21249661
  55. Mitophagy Improves Ethanol Tolerance in Yeast: Regulation by Mitochondrial Reactive Oxygen Species in Saccharomyces cerevisiae vol.30, pp.12, 2020, https://doi.org/10.4014/jmb.2004.04073
  56. The Impact of Mitochondrial Fission-Stimulated ROS Production on Pro-Apoptotic Chemotherapy vol.10, pp.1, 2018, https://doi.org/10.3390/biology10010033
  57. Reactive Oxygen Species as a Link between Antioxidant Pathways and Autophagy vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/5583215
  58. The Role of Posttranslational Modification and Mitochondrial Quality Control in Cardiovascular Diseases vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/6635836
  59. Qiangji Jianli Decoction Alleviates Hydrogen Peroxide-Induced Mitochondrial Dysfunction via Regulating Mitochondrial Dynamics and Biogenesis in L6 Myoblasts vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/6660616
  60. Involvement of Mitochondrial Dynamics and Mitophagy in Sevoflurane-Induced Cell Toxicity vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/6685468
  61. RNA-Seq Profiling to Investigate the Mechanism of Qishen Granules on Regulating Mitochondrial Energy Metabolism of Heart Failure in Rats vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/5779307
  62. Defective Autophagy and Mitophagy in Aging and Alzheimer’s Disease vol.14, pp.None, 2021, https://doi.org/10.3389/fnins.2020.612757
  63. Neuroprotective Role of GLP-1 Analog for Retinal Ganglion Cells via PINK1/Parkin-Mediated Mitophagy in Diabetic Retinopathy vol.11, pp.None, 2018, https://doi.org/10.3389/fphar.2020.589114
  64. Elevated Lactate by High-Intensity Interval Training Regulates the Hippocampal BDNF Expression and the Mitochondrial Quality Control System vol.12, pp.None, 2021, https://doi.org/10.3389/fphys.2021.629914
  65. The Mitochondrial Response to DNA Damage vol.9, pp.None, 2018, https://doi.org/10.3389/fcell.2021.669379
  66. Mitophagy in Diabetic Kidney Disease vol.9, pp.None, 2018, https://doi.org/10.3389/fcell.2021.778011
  67. FUNDC1: A Promising Mitophagy Regulator at the Mitochondria-Associated Membrane for Cardiovascular Diseases vol.9, pp.None, 2018, https://doi.org/10.3389/fcell.2021.788634
  68. Baicalin attenuated Mycoplasma gallisepticum‐induced immune impairment in chicken bursa of fabricius through modulation of autophagy and inhibited inflammation and apoptosis vol.101, pp.3, 2018, https://doi.org/10.1002/jsfa.10695
  69. To betray or to fight? The dual identity of the mitochondria in cancer vol.17, pp.6, 2018, https://doi.org/10.2217/fon-2020-0362
  70. Critical role of dysfunctional mitochondria and defective mitophagy in autism spectrum disorders vol.168, pp.None, 2018, https://doi.org/10.1016/j.brainresbull.2020.12.022
  71. A Commonly Used Biocide 2-N-octyl-4-isothiazolin-3-oneInduces Blood-Brain Barrier Dysfunction via Cellular Thiol Modification and Mitochondrial Damage vol.22, pp.5, 2018, https://doi.org/10.3390/ijms22052563
  72. From Mitochondria to Atherosclerosis: The Inflammation Path vol.9, pp.3, 2018, https://doi.org/10.3390/biomedicines9030258
  73. Role of Mitochondria in Viral Infections vol.11, pp.3, 2018, https://doi.org/10.3390/life11030232
  74. Involvement of Mitophagy in Aluminum Oxide Nanoparticle-Induced Impairment of Learning and Memory in Mice vol.39, pp.2, 2018, https://doi.org/10.1007/s12640-020-00283-0
  75. Mechanistic insights into AMPK-SIRT3 positive feedback loop-mediated chondrocyte mitochondrial quality control in osteoarthritis pathogenesis vol.166, pp.None, 2018, https://doi.org/10.1016/j.phrs.2021.105497
  76. Mitochondrial dynamics and mitophagy involved in MPA-capped CdTe quantum dots-induced toxicity in the human liver carcinoma (HepG2) cell line vol.274, pp.None, 2021, https://doi.org/10.1016/j.envpol.2020.115681
  77. Drp1‐dependent peptide reverse mitochondrial fragmentation, a homeostatic response in Friedreich ataxia vol.9, pp.3, 2018, https://doi.org/10.1002/prp2.755
  78. The Role of Ceramide Metabolism and Signaling in the Regulation of Mitophagy and Cancer Therapy vol.13, pp.10, 2018, https://doi.org/10.3390/cancers13102475
  79. Rapamycin Ameliorates Defects in Mitochondrial Fission and Mitophagy in Glioblastoma Cells vol.22, pp.10, 2018, https://doi.org/10.3390/ijms22105379
  80. Mitophagy and Oxidative Stress: The Role of Aging vol.10, pp.5, 2018, https://doi.org/10.3390/antiox10050794
  81. Mitochondrial Caseinolytic Protease P: A Possible Novel Prognostic Marker and Therapeutic Target in Cancer vol.22, pp.12, 2018, https://doi.org/10.3390/ijms22126228
  82. trans,trans-2,4-Decadienal induces endothelial cell injury by impairing mitochondrial function and autophagic flux vol.12, pp.12, 2018, https://doi.org/10.1039/d1fo00372k
  83. Polycystin‐1 regulates cardiomyocyte mitophagy vol.35, pp.8, 2018, https://doi.org/10.1096/fj.202002598r
  84. Effects of Urolithin A on Mitochondrial Parameters in a Cellular Model of Early Alzheimer Disease vol.22, pp.15, 2018, https://doi.org/10.3390/ijms22158333
  85. Dysregulation of mannose-6-phosphate-dependent cholesterol homeostasis in acinar cells mediates pancreatitis vol.131, pp.15, 2021, https://doi.org/10.1172/jci146870
  86. Two birds with one stone: a NIR fluorescent probe for mitochondrial protein imaging and its application in photodynamic therapy vol.9, pp.30, 2018, https://doi.org/10.1039/d1tb00881a
  87. HIV Increases the Inhibitory Impact of Morphine and Antiretrovirals on Autophagy in Primary Human Macrophages: Contributions to Neuropathogenesis vol.10, pp.9, 2018, https://doi.org/10.3390/cells10092183
  88. Dynamic observation of 5‑fluorouracil‑induced myocardial injury and mitochondrial autophagy in aging rats vol.22, pp.6, 2018, https://doi.org/10.3892/etm.2021.10886
  89. Role of Mitochondria in Radiation Responses: Epigenetic, Metabolic, and Signaling Impacts vol.22, pp.20, 2018, https://doi.org/10.3390/ijms222011047
  90. IL-17B/RB Activation in Pancreatic Stellate Cells Promotes Pancreatic Cancer Metabolism and Growth vol.13, pp.21, 2018, https://doi.org/10.3390/cancers13215338
  91. Autophagy in Cancer Therapy-Molecular Mechanisms and Current Clinical Advances vol.13, pp.21, 2018, https://doi.org/10.3390/cancers13215575
  92. FNDC-1-mediated mitophagy and ATFS-1 coordinate to protect against hypoxia-reoxygenation vol.17, pp.11, 2021, https://doi.org/10.1080/15548627.2021.1872885
  93. Flower-Like Molybdenum Disulfide Nanostructures for Promoting Mitochondrial Homeostasis and Attenuating Inflammatory Endothelial Dysfunction vol.4, pp.11, 2018, https://doi.org/10.1021/acsanm.1c02315
  94. Molybdenum and cadmium co-induce hypothalamus toxicity in ducks via disturbing Nrf2-mediated defense response and triggering mitophagy vol.228, pp.None, 2018, https://doi.org/10.1016/j.ecoenv.2021.113022
  95. BNIP3L/NIX-mediated mitophagy protects against glucocorticoid-induced synapse defects vol.12, pp.1, 2021, https://doi.org/10.1038/s41467-020-20679-y
  96. Nuclear factor erythroid 2-related factor 2 protects bovine mammary epithelial cells against free fatty acid-induced mitochondrial dysfunction in vitro vol.104, pp.12, 2018, https://doi.org/10.3168/jds.2021-20732
  97. Contribution of Mitochondrial Dysfunction Combined with NLRP3 Inflammasome Activation in Selected Neurodegenerative Diseases vol.14, pp.12, 2018, https://doi.org/10.3390/ph14121221
  98. Synaptic Mitochondria: An Early Target of Amyloid-β and Tau in Alzheimer’s Disease vol.84, pp.4, 2018, https://doi.org/10.3233/jad-215139
  99. Drp1 knockdown represses apoptosis of rat retinal endothelial cells by inhibiting mitophagy vol.124, pp.1, 2022, https://doi.org/10.1016/j.acthis.2021.151837
  100. BNIP3L/NIX-mediated mitophagy: molecular mechanisms and implications for human disease vol.13, pp.1, 2018, https://doi.org/10.1038/s41419-021-04469-y
  101. IGFBP‐3 functions as a molecular switch that mediates mitochondrial and metabolic homeostasis vol.36, pp.1, 2018, https://doi.org/10.1096/fj.202100710rr
  102. Molecular Mechanisms and Regulation of Mammalian Mitophagy vol.11, pp.1, 2018, https://doi.org/10.3390/cells11010038