DOI QR코드

DOI QR Code

The Role of Autophagy in Systemic Metabolism and Human-Type Diabetes

  • Kim, Jinyoung (Severance Biomedical Science Institute & Department of Internal Medicine, Yonsei University College of Medicine) ;
  • Lim, Yu-Mi (Severance Biomedical Science Institute & Department of Internal Medicine, Yonsei University College of Medicine) ;
  • Lee, Myung-Shik (Severance Biomedical Science Institute & Department of Internal Medicine, Yonsei University College of Medicine)
  • Received : 2017.09.27
  • Accepted : 2017.10.12
  • Published : 2018.01.31

Abstract

Autophagy is critical for the maintenance of organelle function and intracellular nutrient environment. Autophagy is also involved in systemic metabolic homeostasis, and its dysregulation can lead to or accelerate the development of metabolic disorders. While the role of autophagy in the global metabolism of model organisms has been investigated mostly using site-specific genetic knockout technology, the impact of dysregulated autophagy on systemic metabolism has been unclear. Here, we review recent papers showing the role of autophagy in systemic metabolism and in the development of metabolic disorders. Also included are data suggesting the role of autophagy in human-type diabetes, which are different in several key aspects from murine models of diabetes. The results shown here support the view that autophagy modulation could be a new modality for the treatment of metabolic syndrome associated with lipid overload and human-type diabetes.

Keywords

E1BJB7_2018_v41n1_11_f0001.png 이미지

Fig. 1. Infiltration of IL-1-producing macrophages into the adipose tissue of Atg7+/--ob/obmice. Paraffin-embedded adipose tissue sections were stained with anti-IL-1β and anti-F4/80 antibodies as the primary antibodies, and confocal microscopy was done (left). The number of IL-1β-producing macrophages in the adipose tissue of Atg7 +/--ob/ob mice was higher than in the adipose tissue of Atg7 +/+-ob/ob mice (right). (HPF, high-power field)

E1BJB7_2018_v41n1_11_f0002.png 이미지

Fig. 2. Accumulation of hIAPP oligomers in hIAPP+ mice with β-cell autophagy knockout (hIAPP+Atg7Δb-cell mice). Confocal mi-croscopy after immunofluorescent staining of pancreas sectionsemploying anti-insulin and anti-hIAPP oligomer (I11) antibodies.hIAPP oligomer accumulation was not seen when autophagy iscompetent, despite transgenic expression of hIAPP (left).

E1BJB7_2018_v41n1_11_f0003.png 이미지

Fig. 3. Proposed model for the development of diabeteswith lipid overload or human-type diabetes with autoph-agy insufficiency. Metabolic stress in the presence ofautophagy insufficiency causes increased lipid accumu-lation due to compromised lipophagy. Autophagy insuf-ficiency leads to delayed clearance of dysfunctionalmitochondria, which causes increased inflammasomeactivation when the cell is challenged with an inflam-masome activator, such as lipids (green arrow). Au-tophagy insufficiency also leads to accumulation ofhuman IAPP (hIAPP) oligomers in pancreatic β-cells,since hIAPP clearance is dependent on autophagy. Thecombined effects of these three axes and their interac-tions finally culminates in the development of insulinresistance, β-cell failure and diabetes.

References

  1. Castillo, K., Nassif, M., Valenzuela, V., Rohas, F., Matus, S., Mercado, G., Court, F.A., van Zundert, B., and Hetz, C. (2013). Trehalose delays the progression of amyotrophic lateral sclerosis by enhancing autophagy in motoneurons. Autophagy 9, 1308-1320. https://doi.org/10.4161/auto.25188
  2. Coupe, B., Ishii, Y., Dietrich, M.O., Komatsu, M., Horvath, T.L., and Bouret, S.G. (2012). Loss of autophagy in pro-opiomelanocortin neurons perturbs axon growth and causes metabolic dysregulation. Cell Metab. 15, 1-9. https://doi.org/10.1016/j.cmet.2011.12.007
  3. Dehay, B., Bove, J., Rodriguez-Muela, N., Perier, C., Recasens, A., Boya, P., and Vila, M. (2010). Pathogenic lysosomal depletion in Parkin's disease. Neurobiol. Dis. 30, 12534-12544.
  4. Ebato, C., Uchida, T., Arakawa, M., Komatsu, M., Ueno, T., Komiya, K., Azuma, K., Hirose, T., Tanaka, K., Kominami, E., et al. (2008). Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab. 8, 325-332. https://doi.org/10.1016/j.cmet.2008.08.009
  5. Eisenberg, T., Knauer, H., Schauer, A., Buttner, S., Ruckenstuhl, C., Carmona-Gutierrez, D., Ring, J., Schroeder, S., Magnes, C., Antonacci, L., et al. (2009). Induction of autophagy by spermidine promotes longevity. Nature Cell Biol. 11, 1305-1314. https://doi.org/10.1038/ncb1975
  6. Eisenberg, T., Abdellatif, M., Schroeder, S., Primessnig, U., Stekovic, S., Pendl, T., Harger, A., Schipke, J., Zimmermann, A., Schmidt, A., et al. (2016). Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat. Med. 22, 1428-1438. https://doi.org/10.1038/nm.4222
  7. Fan, Y., Wang, N., Rocchi, A., Zhang, W., Vassar, R., Zhou, Y., and He, C. (2017). Identification of natural products with neuronal and metabolic benefits through autophagy induction. Autophagy 13, 41-56. https://doi.org/10.1080/15548627.2016.1240855
  8. Goginashvili, A., Zhang, Z., Erbs, E., Spiegelhalter, C., Kessler, P., Mihlan, M., Pasquier, A., Krupina, K., Schieber, N., Cinque, L., et al. (2015). Insulin granules. Insulin secretory granules control autophagy in pancreatic ${\beta}$ cells. Science 347, 878-882. https://doi.org/10.1126/science.aaa2628
  9. Haataja, L., Gurlo, T., Huang, C.J., and Butler, P.C. (2008). Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis. Endocr. Rev. 29, 303-316. https://doi.org/10.1210/er.2007-0037
  10. He, C., Bassik, M.C., Moresi, V., Sun, K., Wei, Y., Zou, Z., An, Z., Loh, J., Fisher, J., Sun, Q., et al. (2012). Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 481, 511-515. https://doi.org/10.1038/nature10758
  11. Janson, J., Soeller, W.C., Roche, P.C., Nelson, R.T., Torchia, A.J., Kreutter, D.K., and Butler, P.C. (1996). Spontaneous diabetes mellitus in transgenic mice expressing human islet amyloid polypeptide. Proc. Natl. Acad. Sci. USA 93, 7283-7288. https://doi.org/10.1073/pnas.93.14.7283
  12. Jayasinghe, S.A., and Langen, R. (2005). Lipid membranes modulate the structure of islet amyloid polypeptide. Biochemistry 44, 12113-12119. https://doi.org/10.1021/bi050840w
  13. Johnson, A.M.F., and Olefsky, J.M. (2013). The origins and drivers of insulin resistance. Cell 152, 673-684. https://doi.org/10.1016/j.cell.2013.01.041
  14. Jung, H.S., Chung, K.W., Kim, J.W., Kim, J., Komatsu, M., Tanaka, K., Nguyen, Y.H., Kang, T.M., Yoon, K.H., Kim, J.W., et al. (2008). Loss of autophagy diminishes pancreatic b-cell mass and function with resultant hyperglycemia. Cell Metab. 8, 318-324. https://doi.org/10.1016/j.cmet.2008.08.013
  15. Kahn, S.E., Andrikopoulos, S., and Verchere, C.B. (1999). Islet amyloid: a long-recognized but underappreciated pathological feature of type 2 diabetes. Diabetes 48, 241-253. https://doi.org/10.2337/diabetes.48.2.241
  16. Kaushik, S., Rodriguez-Navarro, J.A., Arias, E., Kiffin, R., Sahu, S., Schwartz, G.J., Cuervo, A.M., and Singh, R. (2011). Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance. Cell Metab. 14, 173-183. https://doi.org/10.1016/j.cmet.2011.06.008
  17. Kaushik, S., Arias, E., Kwon, H., Lopez, N.M., Athonvarangkull, D., Sahu, S., Schwartz, G.J., Pessin, J.E., and Singh, R. (2012). Loss of autophagy in hypothalamic POMC neurons impairs lipolysis. EMBO Rep. 13, 258-265. https://doi.org/10.1038/embor.2011.260
  18. Kim, K.H., and Lee, M.-S. (2014). Autophagy-a key player in cellular and body metabolism. Nat. Rev. Endocrinol. 10, 322-337. https://doi.org/10.1038/nrendo.2014.35
  19. Kim, K.H., Jeong, Y.T., Oh, H., Kim, S.-H., Cho, J.M., Kim, Y.-N., Kim , S.S., Kim, D.H., Hur, K.Y., Kim , H.K., et al. (2013a). Autophagy deficiency leads to protection from obesity and insulin resistance by inducing FGF21 as a 'mitokine' Nat. Med. 19, 83-92. https://doi.org/10.1038/nm.3014
  20. Kim, K.H., Jeong, Y.T., Oh, H., Kim, S.H., Cho, J.M., Kim, Y.-N., Kim, S.S., Kim, D.H., Hur, K.Y., Kim, H.K., et al. (2013b). Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat. Med. 19, 83-92. https://doi.org/10.1038/nm.3014
  21. Kim, J., Cheon, H., Jeong, Y.T., Quan, Y., Kim, K.H., Cho, J.M., Lim, Y.-M., Oh, S.H., Jin, S.-M., Kim, J.H., et al. (2014). Amyloidogenic peptide oligomer accumulation in autophagy-deficient b-cells leads to diabetes. J. Clin. Invest. 125, 3311-3324.
  22. Klionsky, D.J., and Emr, S.D. (2000). Autophagy as a regulated pathway of cellular degradation. Science 290, 1717-1721. https://doi.org/10.1126/science.290.5497.1717
  23. Klionsky, D.J., Abdelmohsen, K., Abe, A., Abedin, M.J., Abeliovich, H., Acevedo Arozena, A., Adachi, H., Adams, C.M., Adams, P.D., Adeli, K., et al. (2016). Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12, 1-222. https://doi.org/10.1080/15548627.2015.1100356
  24. Lee, H.-Y., Kim, J., Quan, Y., Lee, J.-C., Kim, M.-S., Km, S., Bae, J.-W., Hur, K.Y., and Lee, M.S. (2016). Autophagy deficiency in myeloid cells increases susceptibility to obesity-induced diabetes and experimental colitis. Autophagy 12, 1390-1403. https://doi.org/10.1080/15548627.2016.1184799
  25. Liao, X., Sluimer, J.C., Wang, Y., Subramanian, M., Brown, K., Pattison, J.S., Robbins, J., Martinez, J., and Tabas, I. (2012). Macrophage autophagy plays a protective role in advanced atherosclerosis. Cell Metab. 15, 545-553. https://doi.org/10.1016/j.cmet.2012.01.022
  26. Lim, Y.-M., Lim, H.-J., Hur, K.Y., Quan, W., Lee, H.-Y., Cheon, H., Ryu, D., Koo, S.H., Kim, H.L., Kim, J., et al. (2014). Systemic autophagy insufficiency compromises adaptation to metabolic stress and facilitates progression from obesity to diabetes Nat. Commun. 5, 4934. https://doi.org/10.1038/ncomms5934
  27. Lin, F., Ghislat, G., Luo, S., Renna, M., Siddiqi, F., and Rubinsztein, D.C. (2015). XIAP and cIAP1 amplifications induce Beclin 1-dependent autophagy through $NF{\kappa}B$ activation. Hum. Mol. Genet. 24, 2899-2913. https://doi.org/10.1093/hmg/ddv052
  28. Liu, K., Zhao, E., Ilyas, G., Lalazar, G., Lin, Y., Haseeb, M., Tanaka, K.E., and Czaja, M.J. (2015). Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization. Autophagy 11, 271-284. https://doi.org/10.1080/15548627.2015.1009787
  29. Martinez-Lopez, N., Athonvarangkul, D., Sahu, S., Coletto, L., Zong, H., Bastie, C.C., Pessin, J.E., Schwartz, G.J., and Singh, R. (2013). Autophagy in Myf5+ progenitors regulates energy and glucose homeostasis through control of brown fat and skeletal muscle development. EMBO Rep. 14, 795-803. https://doi.org/10.1038/embor.2013.111
  30. Misawa, T., Takahama, M., Kozaki, T., Lee, H., Zou, J., Saitoh, T., and Akira, S. (2013). Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat. Immunol. 14, 454-460. https://doi.org/10.1038/ni.2550
  31. Mizushima, N., and Komatsu, M. (2011). Autophagy: renovation of cells and tissues. Cell 147, 728-741. https://doi.org/10.1016/j.cell.2011.10.026
  32. Morselli, E., Marino, G., Bennetzen, M.V., Eisenberg, T., Megalou, E., Schroeder, S., Cabrera, S., Benit, P., Rustin, P., Criollo, A., et al. (2011). Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome. J. Cell Biol. 192, 615-629. https://doi.org/10.1083/jcb.201008167
  33. Park, K., and Verchere, C.B. (2001). Indentification of a heparin binding domain in the N-terminal cleavage site of pro-islet amyloid polypeptide. J. Biol. Chem. 276, 16611-16616. https://doi.org/10.1074/jbc.M008423200
  34. Paulsson, J.F., Anderson, A., Westermark, P., and Westermark, G.T. (2006). Intracellular amyloid-like deposits contains unprocessed proislet amyloid polypeptide (proIAPP) in beta cells of transgenic mice overexpressing the gene for human IAPP and transplanted human islet. Diabetologia 49, 1237-1246. https://doi.org/10.1007/s00125-006-0206-7
  35. Pyo, J.O., Yoo, S.M., Ahn, H.H., Nah, J., Hong, S.H., Kam, T.I., Jung, S., and Jung, Y.K. (2013). Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nat. Commun. 4, 2300.
  36. Quan, W., Hur, K.Y., Lim, Y., Oh, S.H., Lee, J.-C., Kim, H.C., Kim, G.-H., Kim, S.-H., Kim, H.L., Lee, M.-K., et al. (2012a). Autophagy deficiency in beta cells leads to compromised unfolded protein response and progression from obesity to diabetes in mice. Diabetologia 55, 392-403. https://doi.org/10.1007/s00125-011-2350-y
  37. Quan, W., Kim, H.-K., Moon, E.-Y., Kim, S.S., Choi, C.S., Komatsu, M., Jeong, Y.T., Lee, M.-K., Kim, K.-W., Kim, M.-S., et al. (2012b). Role of hypothalamic proopiomelanocortin neuron autophagy in the control of appetite and leptin response. Endocrinology 153, 1817-1826. https://doi.org/10.1210/en.2011-1882
  38. Rivera, J.F., Costes, S., Gurlo, T., Glabe, C., and Butler, P.C. (2014). Autophagy defends pancreatic b-cells from human islet amyloid polypeptide-induced toxicity. J. Clin. Invest. 124, 3489-3500. https://doi.org/10.1172/JCI71981
  39. Rubinsztein, D.C. (2006). The roles of intracellular proteindegradation pathways in neurodegeneration. Nature 443, 780-786. https://doi.org/10.1038/nature05291
  40. Rubinsztein, D.C., Codogno, P., and Levine, B. (2012). Autophagy modulation as a potential therapeutic target for diverse diseases. Nat. Rev. Drug Discov. 11, 709-730. https://doi.org/10.1038/nrd3802
  41. Shibata, M., Yoshimura, K., Furuya, N., Koike, M., Ueno, T., Komatsu, M., Arai, H., Tanaka, K., Kominami, E., and Uchiyama, Y. (2009). The MAP1-LC3 conjugation system is involved in lipid droplet formation. Biochem. Biophys. Res. Com. 382, 419-423. https://doi.org/10.1016/j.bbrc.2009.03.039
  42. Shigihara, N., Fukunaka, A., Hara, A., Komiya, K., Honda, A., Uchida, T., Abe, H., Toyofuku, Y., Tamaki, M., Ogihara, T., et al. (2014). Human IAPP-induced pancreatic beta-cell toxicity and its regulation by autophagy. J. Clin. Invest. 124, 3634-3644. https://doi.org/10.1172/JCI69866
  43. Shoji-Kawata, S., Sumpter, R., Leveno, M., Campbell, G.R., Zou, Z., Kinch, L., Wilkins, A.D., Sun, Q., Pallauf, K., MacDuff, D., et al. (2013). Identification of a candidate therapeutic autophagy-inducing peptide. Nature 494, 201-206. https://doi.org/10.1038/nature11866
  44. Singh, R., Kaushik, S., Wang, Y., Xiang, Y., Novak, I., Komatsu, M., Tanaka, K., Cuervo, A.M., and Czaja, M.J. (2009a). Autophagy regulates lipid metabolism. Nature 458, 1131-1135. https://doi.org/10.1038/nature07976
  45. Singh, R., Xiang, Y., Wang, Y., Baikati, K., Cuervo, A.M., Luu, Y.K., Tang, Y., Pessin, J.E., Schwartz, G.J., and Czaja, M.J. (2009b). Autophagy regulates adipose mass and differentiation in mice. J. Clin. Invest. 119, 3329-3339.
  46. Sun, N., Yun, J., Liu, J., Malide, D., Liu, C., Rovira, I.I., Holmstrom, K.M., Fergusson, M.M., Yoo, Y.H., Combs, C.A., et al. (2015). Measuring In vivo mitophagy. Mol. Cell 60, 685-696. https://doi.org/10.1016/j.molcel.2015.10.009
  47. Vandanmagsar, B., Youm, Y.-H., Ravussin, A., Galgani, J.E., Stadler, K., Mynatt, R.L., Ravussin, E., Stephens, J.M., and Dixit, W.D. (2011). The NLRP3 inflammasome instigate obesity-induced inflammation and insulin resistance. Nat. Med. 17, 179-188. https://doi.org/10.1038/nm.2279
  48. Verchere, C.B., D'Alessio, D.A., Palmiter, R.D., Weir, G.C., Bonner-Weir, S., Baskin, D.G., and Kahn, S.E. (1996). Islet amyloid formation associated with hyperglycemia in transgenic mice with pancreatic beta cell expression of human islet amyloid polypeptide. Proc. Natl. Acad. Sci. USA 93, 3492-3496. https://doi.org/10.1073/pnas.93.8.3492
  49. Wen, H., Gris, D., Lei, Y., Jha, S., Zhang, L., Huang, M.T., Brickey, W.J., and Ting, J.P. (2011). Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat. Immunol. 12, 408-415. https://doi.org/10.1038/ni.2022
  50. Westermark, P., Andersson, A., and Westernark, G.T. (2011). Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol. Rev. 91, 795-826. https://doi.org/10.1152/physrev.00042.2009
  51. Xie, Q., Lin, Q., Li, D., and Chen, J. (2017). Imatinib induced autophagy via upregulating XIAP in GIST882 cells. Biochem. Biophys. Res. Com. 488, 584-589. https://doi.org/10.1016/j.bbrc.2017.05.096
  52. Yang, B.-G., Hur, K.Y., and Lee, M.S. (2017). Alterations of gut microbiota and immunity by dietary fat. Yonsei Med. J. 58, 1083-1091. https://doi.org/10.3349/ymj.2017.58.6.1083
  53. Zhang, L., Yu, J., Pan, H., Hu, P., Hao, Y., Cai, W., Zhu, H., Yu, A.D., Xie, X., Ma, D., et al. (2007). Small molecule regulators of autophagy identified by an image-based high-throughput screen. Proc. Natl. Acad. Sci. USA 104, 190223-119028.
  54. Zhang, Y., Goldman, S., Baerga, R., Zhao, Y., Komatsu, M., and Jin, S. (2009). Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis. Proc. Natl. Acad. Sci. USA 106, 19860-19865. https://doi.org/10.1073/pnas.0906048106

Cited by

  1. Hallmarks of Aging: An Autophagic Perspective vol.9, pp.1664-2392, 2018, https://doi.org/10.3389/fendo.2018.00790
  2. Mechanisms Associated with Type 2 Diabetes as a Risk Factor for Alzheimer-Related Pathology pp.1559-1182, 2019, https://doi.org/10.1007/s12035-019-1475-8
  3. Overview of the Minireviews on Autophagy vol.41, pp.1, 2018, https://doi.org/10.14348/molcells.2018.0400
  4. Modulation of autophagy in human diseases strategies to foster strengths and circumvent weaknesses vol.39, pp.5, 2018, https://doi.org/10.1002/med.21571
  5. Relationship Between Oxidative Stress, ER Stress, and Inflammation in Type 2 Diabetes: The Battle Continues vol.8, pp.9, 2019, https://doi.org/10.3390/jcm8091385
  6. Catalpol in Diabetes and its Complications: A Review of Pharmacology, Pharmacokinetics, and Safety vol.24, pp.18, 2018, https://doi.org/10.3390/molecules24183302
  7. Lipophagy: Molecular Mechanisms and Implications in Metabolic Disorders vol.43, pp.8, 2020, https://doi.org/10.14348/molcells.2020.0046
  8. Human ZKSCAN3 and Drosophila M1BP are functionally homologous transcription factors in autophagy regulation vol.10, pp.None, 2018, https://doi.org/10.1038/s41598-020-66377-z
  9. A Selective Look at Autophagy in Pancreatic β-Cells vol.70, pp.6, 2021, https://doi.org/10.2337/dbi20-0014
  10. The FMRFamide Neuropeptide FLP-20 Acts as a Systemic Signal for Starvation Responses in Caenorhabditis elegans vol.44, pp.7, 2018, https://doi.org/10.14348/molcells.2021.0051
  11. Glucose Variability: How Does It Work? vol.22, pp.15, 2018, https://doi.org/10.3390/ijms22157783
  12. Treatment with Autophagy Inducer Trehalose Alleviates Memory and Behavioral Impairments and Neuroinflammatory Brain Processes in db/db Mice vol.10, pp.10, 2018, https://doi.org/10.3390/cells10102557
  13. Autophagy in ovary and polycystic ovary syndrome: role, dispute and future perspective vol.17, pp.10, 2021, https://doi.org/10.1080/15548627.2021.1938914
  14. Activation of mitochondrial TUFM ameliorates metabolic dysregulation through coordinating autophagy induction vol.4, pp.1, 2018, https://doi.org/10.1038/s42003-020-01566-0