DOI QR코드

DOI QR Code

Evaluation of Energy Dependency for Air Kerma Area Product by RQR Beam Quality and Indirect Calibration

RQR 선질에 따른 공기커마 면적선량계의 에너지 의존성 평가와 간접 교정

  • Kim, Jung-Su (Department of Radiologic Technology, Chungbuk Health & Science University) ;
  • Kim, Sung-Hwan (Department of Radiological Science, College of Health Science, Cheongju University) ;
  • Kim, Mi-Jeong (Ministry of Food and Drug Safety, Medical Device Research Division) ;
  • Lee, Seung-Youl (Ministry of Food and Drug Safety, Medical Device Research Division) ;
  • Lee, Tae-Hee (Ministry of Food and Drug Safety, Medical Device Research Division) ;
  • Seoung, Youl-Hun (Department of Radiological Science, College of Health Science, Cheongju University)
  • 김정수 (충북보건과학대학교 방사선과) ;
  • 김성환 (청주대학교 보건의료과학대학 방사선학과) ;
  • 김미정 (식품의약품안전처 의료기기연구과) ;
  • 이승열 (식품의약품안전처 의료기기연구과) ;
  • 이태희 (식품의약품안전처 의료기기연구과) ;
  • 성열훈 (청주대학교 보건의료과학대학 방사선학과)
  • Received : 2018.10.31
  • Accepted : 2018.11.30
  • Published : 2018.11.30

Abstract

According IEC 60601-1 ed3.1 and IEC 60601-2-45 regulation, diagnostic X-ray equipment should be display to measured and calculated air kerma area product. On the clinical X ray equipment, air kerma area product dosimeter would like to have an evidence for dosimeter accuracy and energy dependency. This study was performed to indirect calibration and energy dependency test for attached type air kerma area product (KAP) dosimeter by RQR standards beam quality. On the RQR5 beam quality, attached KAP dosimeter error showed -7.5%, respectably. On the RQR9 beam quality, attached KAP dosimeter error showed -10.4%, respectably. All RQR beam quality, average absolute error was $8.30%{\pm}2.85%$, respectably. On this study, attached KAP dosimeter was satisfied to IEC 60580 and AAPM TG 190. This calibration method of KAP dosimeter will help to performance maintain for clinical KAP dosimeter.

국제전기기술위원회의 문서 IEC 60601-1의 3판 규격과 IEC 60601-2-45의 개별 규격에서는 진단용 X선 장치에서 X선 피폭 선량 정보를 표시하고 그 정확성을 명시할 것을 권고하고 있다. 하지만 임상에서 사용하는 부착형 공기커마 면적선량계는 교정에 어려움이 있다. 이에 본 연구에서는 임상에 적용 가능한 RQR 표준 선질을 이용하여 공기커마 면적선량계의 에너지 의존성과 정확도를 평가하였고 임상에서 간접 교정을 시행할 수 있도록 방법론을 마련하고자 하였다. RQR5의 표준 선질에서 시행한 시험에서 부착형 공기커마 면적선량계는 -7.5%의 오차를 나타냈고, RQR8의 표준 선질에서는 -10.3%의 오차를 나타냈으며 시험한 모든 RQR 선질에 대해 평균 절대오차는 $8.30%{\pm}2.85%$를 나타내 IEC 60580과 AAPM TG 190의 조건을 만족하였다. 본 연구에서 도출한 공기커마 면적선량계의 교정 방법은 임상에서 사용하는 공기커마 면적 선량계의 간접 교정법으로 사용할 수 있을 것으로 기대한다.

Keywords

BSSHB5_2018_v12n6_769_f0001.png 이미지

Fig. 1. Field-size measurement plate by AAPM TG190.

BSSHB5_2018_v12n6_769_f0002.png 이미지

Fig. 2. Test geometry of KAP meter energy dependency and calibration.

Table 1. Standards beam quality of RQR

BSSHB5_2018_v12n6_769_t0001.png 이미지

Table 2. Exposure conditions and air kerma area product of each RQR beam quality

BSSHB5_2018_v12n6_769_t0002.png 이미지

Table 3. Measured and calculated air kerma area product for each RQR beam quality

BSSHB5_2018_v12n6_769_t0003.png 이미지

References

  1. J. Malone, R. Guleria, C. Craven, P. Horton, H. Jarvinen, J. Mayo, G. O'reilly, E. Picano, D. Remedios, J. Le. Heron, M. Rehani, O. Holmberg, R. Czarwinski, "Justification of diagnostic medical exposures: some practical issues. Report of an International Atomic Energy Agency Consultation," The British journal of radiology, Vol. 85, No. 1013, pp. 523-538, 2012. https://doi.org/10.1259/bjr/42893576
  2. R. A. Terini, M. C. D. S. Campelo, Jr, J. N. D. Almeida, S. B. Herdade, M. A. G. Pereira, "Doses monitoring in radiology: calibration of air kerma-area product (PKA) meters," Radiologia Brasileira, Vol. 46, No. 6, pp. 358-366, 2013. https://doi.org/10.1590/S0100-39842013000600008
  3. C. J. Martin, "Radiation dosimetry for diagnostic medical exposures," Radiation protection dosimetry, Vol. 128, No. 4, pp. 389-412, 2008. https://doi.org/10.1093/rpd/ncm495
  4. P. J. P. Lin, B. A. Schueler, S. Balter, K. J. Strauss, K. A. Wunderle, M. T. LaFrance, D. S. Kim, R. H. Behrman, S. J. Shepard, I. H. Bercha, "Accuracy and calibration of integrated radiation output indicators in diagnostic radiology: a report of the AAPM Imaging Physics Committee Task Group 190," Medical physics, Vol. 42, No. 12, pp. 6815-6829, 2016. https://doi.org/10.1118/1.4934831
  5. IEC 60601-2-54:2009/AMD2:2018. Amendment 2 - Medical electrical equipment - Part 2-54: Particular requirements for the basic safety and essential performance of X-ray equipment for radiography and radioscopy. Oct. 24. 2018. Accessed at https://webstore.iec.ch/publication/32217
  6. IEC 60601-2-54:2009/AMD1:2015. Amendment 1 - Medical electrical equipment - Part 2-54: Particular requirements for the basic safety and essential performance of X-ray equipment for radiography and radioscopy. Oct. 24. 2018. Accessed at https://webstore.iec.ch/publication/22159
  7. IBA Dosimetry web site. Oct. 24. 2018. Accessed at https://www.iba-dosimetry.com/product/kermaxr-plus-tino-two-in-one/
  8. IAEA. Dosimetry in Diagnostic Radiology: An International Code of Practice. Oct. 25. 2018. IAEA web site. Accessed at https://www-pub.iaea.org/books/iaeabooks/7638/Dosimetry-in-Diagnostic-Radiology-An-International-Code-of-Practice
  9. IEC 60601-1:2005/AMD1:2012. Amendment 1 - Medical electrical equipment - Part 1: General requirements for basic safety and essential performance. Oct. 25. 2018. Accessed at https://webstore.iec.ch/publication/2605
  10. IEC 61267:2005. Medical diagnostic X-ray equipment - Radiation conditions for use in the determination of characteristics. Oct. 25. 2018 Accessed at https://webstore.iec.ch/publication/5079
  11. AAPM Report No. 125. Functionality and Operation of Fluoroscopic Automatic Brightness Control/Automatic Dose Rate Control Logic in Modern Cardiovascular and Interventional Angiography Systems (2012). Oct. 25. 2018. Accessed at https://www.aapm.org/pubs/reports/detail.asp?docid=116