DOI QR코드

DOI QR Code

Study on Synthesis and Characterization of Magnetic ZnFe2O4@SnO2@TiO2 Core-shell Nanoparticles

자성을 가진 ZnFe2O4@SnO2@TiO2 Core-Shell Nanoparticles의 합성과 특성에 관한 연구

  • Yoo, Jeong-yeol (Department of Chemistry, College of Natural Science, Dankook University) ;
  • Park, Seon-A (Department of Chemistry, College of Natural Science, Dankook University) ;
  • Jung, Woon-Ho (Department of Chemistry, College of Natural Science, Dankook University) ;
  • Park, Seong-Min (Department of Chemistry, College of Natural Science, Dankook University) ;
  • Tae, Gun-Sik (Department of biology, College of Natural Science, Dankook University) ;
  • Kim, Jong-Gyu (Department of Chemistry, College of Natural Science, Dankook University)
  • 유정열 (단국대학교 자연과학대학 화학과) ;
  • 박선아 (단국대학교 자연과학대학 화학과) ;
  • 정운호 (단국대학교 자연과학대학 화학과) ;
  • 박성민 (단국대학교 자연과학대학 화학과) ;
  • 태건식 (단국대학교 자연과학대학 생명과학과) ;
  • 김종규 (단국대학교 자연과학대학 화학과)
  • Received : 2018.06.07
  • Accepted : 2018.08.30
  • Published : 2018.12.10

Abstract

In this study, $ZnFe_2O_4@SnO_2@TiO_2$ core-shell nanoparticles (NPs), a photocatalytic material with magnetic properties, were synthesized through a three-step process. Structural properties were investigated using X-ray diffraction (XRD) analysis. It was confirmed that $ZnFe_2O_4$ of the spinel, $SnO_2$ of the tetragonal and $TiO_2$ of the anatase structure were synthesized. The magnetic properties of synthesized materials were studied by a vibrating sample magnetometer (VSM). The saturation magnetization value of $ZnFe_2O_4$, a core material, was confirmed at 33.084 emu/g. As a result of the formation of $SnO_2$ and $TiO_2$ layers, the magnetism due to the increase in thickness was reduced by 33% and 40%, respectively, but sufficient magnetic properties were reserved. The photocatalytic efficiency of synthesized materials was measured using methylene blue (MB). The efficiency of the core material was about 4.2%, and as a result of the formation of $SnO_2$ and $TiO_2$ shell, it increased to 73% and 96%, respectively while maintaining a high photocatalytic efficiency. In addition, the antibacterial activity was validated via the inhibition zone by using E. Coli and S. Aureus. The formation of shells resulted in a wider inhibition zone, which is in good agreement with photocatalytic efficiency measurements.

본 연구에서는 자성을 이용하여 재수득이 가능한 광 촉매 물질인 $ZnFe_2O_4@SnO_2@TiO_2$ core-shell nanoparticles (NPs)를 3단계 과정을 통해 합성하였다. 구조적 특성은 X-ray diffraction (XRD) 분석으로 확인하였다. Spinel 구조의 $ZnFe_2O_4$와 tetragonal 구조의 $SnO_2$와 anatase 구조의 $TiO_2$가 합성된 것을 확인하였다. 합성한 물질의 자기적 성질은 vibrating sample magnetometer (VSM)으로 확인하였다. Core 물질인 $ZnFe_2O_4$의 포화자화 값은 33.084 emu/g으로 확인하였다. $SnO_2$$TiO_2$층의 형성의 결과, 두께 증가로 인한 자성은 각각 33, 40% 감소하였으나 재수득이 가능한 충분한 자성을 가지는 것을 확인하였다. 합성된 물질의 광 촉매 효율은 methylene blue (MB)를 사용하여 측정하였다. Core 물질의 효율은 4.2%로 확인하였고 $SnO_2$$TiO_2$ shell 형성의 결과 각각 73%와 96%로 증가하였고 높은 광 촉매 효율을 가지는 것을 확인하였다. 또한 항균 특성은 대장균(E. Coli)과 황색포도상구균(S. Aureus)을 사용하여 억제 영역을 확인하였다. Shell이 형성되면서 더 넓은 억제 영역이 형성되었고 이는 광 촉매 효율을 측정한 결과와 일치하는 것을 확인하였다.

Keywords

GOOOB2_2018_v29n6_710_f0001.png 이미지

Figure 1. XRD patterns of (a) ZnFe2O4 NPs with synthesis by using precipitation method, (b) ZnFe2O4@SnO2 core-shell NPs and (c) ZnFe2O4@SnO2@TiO2 core-shell NPs with synthesis by using sonochemical method.

GOOOB2_2018_v29n6_710_f0002.png 이미지

Figure 2. Magnetization hysteresis loops of (A) ZnFe2O4 NPs, (B) ZnFe2O4@SnO2 core-shell NPs and (C) ZnFe2O4@SnO2@TiO2 core-shell NPs.

GOOOB2_2018_v29n6_710_f0003.png 이미지

Figure 3. Absorption spectra of MB taken at different photocatalytic degradation times with (a) ZnFe2O4 NPs, (b) ZnFe2O4@SnO2 core-shell NPs and (c) ZnFe2O4@SnO2@TiO2 core-shell NPs.

GOOOB2_2018_v29n6_710_f0004.png 이미지

Figure 4. Photocatalytic degradation of MB in the presence of (A) ZnFe2O4 NPs, (B) ZnFe2O4@SnO2 core-shell NPs and (C) ZnFe2O4@SnO2@TiO2 core-shell NPs.

GOOOB2_2018_v29n6_710_f0005.png 이미지

Figure 5. Zone of inhibition of (A) ZnFe2O4 NPs, (B) ZnFe2O4@SnO2 core-shell NPs and (C) ZnFe2O4@SnO2@TiO2 core-shell NPs on the E. Coli and (A’) ZnFe2O4 NPs, (B’) ZnFe2O4@SnO2 core-shell NPs and (C’) ZnFe2O4@SnO2@TiO2 core-shell NPs on the S. Aureus.

References

  1. Z. Li, L. W. Mi, W. H. Chen, H. W. Hou, C. T. Liu, H. L. Wang, Z. Zheng, and C. Y. Shen, Three-dimensional CuS hierarchical architectures as recyclable catalysts for dye decolorization, Cryst. Eng. Comm., 14, 3965-3971 (2014).
  2. S. T. Hung, C. J. Chang, and M. H. Hsu, Improved photocatalytic performance of ZnO nanograss decorated pore-array films by surface texture modification and silver nanoparticle deposition, J. Hazard. Mater., 198, 307-316 (2011). https://doi.org/10.1016/j.jhazmat.2011.10.043
  3. I. M. Arabatzis, T. Stergiopoulos, M. C. Bernard, D. Labou, S. G. Neophytide, and P. Falaras, Silver-modified titanium dioxide thin films for efficient photodegradation of methyl orange, Appl. Catal. B, 42, 187-201 (2003). https://doi.org/10.1016/S0926-3373(02)00233-3
  4. M. V. Diamanti, F. C. Spreafico, and M. P. Pedeferri, Production of anodic $TiO_2$ nanofilms and their characterization, Phys. Procedia, 40, 30-37 (2013). https://doi.org/10.1016/j.phpro.2012.12.004
  5. M. H. Baek, W. C. Jung, J. W. Yoon, J. S. Hong, Y. S. Lee, and J. K. Suh, Preparation, characterization and photocatalytic activity evaluation of micro- and mesoporous $TiO_2$/spherical activated carbon, J. Ind. Eng. Chem., 19, 469-477 (2013). https://doi.org/10.1016/j.jiec.2012.08.026
  6. Y. C. Lee and J. W. Yang, Self-assembled flower-like $TiO_2$ on exfoliated graphite oxide for heavy metal removal, J. Ind. Eng. Chem., 18, 1178-1185 (2012). https://doi.org/10.1016/j.jiec.2012.01.005
  7. A. B. Hassan, R. Bazzi, and V. Cabuil, Multistep continuous-flow microsynthesis of magnetic and fluorescent ${\gamma}$-$Fe_2O_3@SiO_2$ core/shell nanoparticles, Angew. Chem. Int. Ed., 48, 7180-7183 (2009). https://doi.org/10.1002/anie.200902181
  8. A. Wilson, S. R. Mishra, R. Gupta, and K. Ghosh, Preparation and photocatalytic properties of hybrid core-shell reusable $CoFe_2O_4$-ZnO nanospheres, J. Magn. Magn. Mater., 324, 2597-2601 (2012). https://doi.org/10.1016/j.jmmm.2012.02.009
  9. L. Y. Chen, Z. X. Xu, H. Dai, and S. T. Zhang, Facile synthesis and magnetic properties of monodisperse $Fe_3O_4$/silica nanocomposite microspheres with embedded structures via a direct solution-based, J. Alloys Compd., 497, 221-227 (2010). https://doi.org/10.1016/j.jallcom.2010.03.016
  10. L. Huang, F. Peng, H. J. Wang, H. Yu, and Z. Li, Preparation and characterization of $Cu_2O$/$TiO_2$ nano-nano heterostructure photocatalysts, Catal. Commun., 10, 1839-1843 (2009). https://doi.org/10.1016/j.catcom.2009.06.011
  11. J. Hu, Y. H. Xie, X. F. Zhou, and J. Y. Yang, Solid-state synthesis of ZnO and $ZnFe_2O_4$ to form p-n junction composite in the use of dye sensitized solar cells, J. Alloys Compd., 676, 320-325 (2016). https://doi.org/10.1016/j.jallcom.2016.03.082
  12. J. Zhu, Z. Lu, S. T. Aruna, D. Aurbach, and A. Gedanken, Sonochemical synthesis of $SnO_2$ nanoparticles and their preliminary study as Li insertion electrodes, Chem. Mater., 12, 2557-2566 (2000). https://doi.org/10.1021/cm990683l
  13. A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238, 37-38 (1972). https://doi.org/10.1038/238037a0
  14. T. Y. Wei, Y. Y. Wang, and C. C. Wan, Photocatalytic oxidation of phenol in the presence of hydrogen peroxide and titanium dioxide powders, J. Photochem. Photobiol. A, 55, 115-126 (1990). https://doi.org/10.1016/1010-6030(90)80024-R
  15. E. C. Butler and A. P. Davis, Photocatalytic oxidation in aqueous titanium dioxide suspensions: the influence of dissolved transition metals, J. Photochem. Photobiol. A, 70, 273-283 (1993). https://doi.org/10.1016/1010-6030(93)85053-B
  16. W. Choi, A. Termin, and M. R. Hoffmann, The role of metal ion dopants in quantum-sized $TiO_2$: correlation between photoreactivity and charge carrier recombination dynamics, J. Phys. Chem., 98, 13669-13679 (1994). https://doi.org/10.1021/j100102a038
  17. K. Eguchi, H. Koga, K. Sekizawa, and K. Sasaki, $Nb_2O_5$-based composite electrodes for dye-sensitized solar cells, J. Ceram. Soc. Jpn., 108, 1067-1071 (2000). https://doi.org/10.2109/jcersj.108.1264_1067
  18. A. Kitiyanan and S. Yoshikawa, The use of $ZrO_2$ mixed $TiO_2$nanostructures as efficient dye-sensitized solar cells' electrodes, Mater. Lett., 59, 4038-4040 (2005). https://doi.org/10.1016/j.matlet.2005.07.080
  19. E. Palomares, J. N. Clifford, S. A. Haque, T. Lutz, and J. R. Durrant, Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers, J. Am. Ceram. Soc., 125, 475-482 (2003).
  20. H. S. Jung, J. K. Lee, M. Nastasi, S. W. Lee, J. Y. Kim, J. S. Park, K. S. Hong, and H. Shin, Retarding charge recombination in perovskite solar cells using ultrathin MgO-coated $TiO_2$ nanoparticulate films, Langmiur, 21, 10332-10335 (2005). https://doi.org/10.1021/la051807d
  21. S.-J. Roh, R. S. Mane, S. Min, W. Lee, C. D. Lokhande, and S. Han, Achievement of 4.51% conversion efficiency using ZnO recombination barrier layer in $TiO_2$ based dye-sensitized solar cells, Appl. Phys. Lett., 89(25), 253512 (2006). https://doi.org/10.1063/1.2410240
  22. Y. Diamant, S. G. Chen, O. Melamed, and A. Zaban, Core-shell nanoporous electrode for dye sensitized solar cells: The effect of the SrTiO3 shell on the electronic properties of the $TiO_2$ core, J. Phys. Chem. B, 107, 1977-1981 (2003). https://doi.org/10.1021/jp027827v
  23. W. N. Fu, Y. H. Kadhum, A. Mohamad, M. S. Takriff, and K. Sopian, Synthesis and catalytic activity of $TiO_2$ nanoparticles for photochemical oxidation of concentrated chlorophenols under direct solar radiation, Int. J. Electrochem. Sci., 7, 4871-4888 (2012).
  24. H. Lv, L. Ma, P. Zeng, D. Ke, and T. Peng, Synthesis of floriated $ZnFe_2O_4$ with porous nanorod structures and its photocatalytic hydrogen production under visible light, J. Mater. Chem., 20, 3665-3672 (2010). https://doi.org/10.1039/b919897k
  25. L. Jiang, G. Sun, Z. Zhou, S. Sun, Q. Wang, S. Yan, H. Li, J. Tian, J. Guo, B. Zhou, and Q. Xin, Size-controllable synthesis of monodispersed $SnO_2$ nanoparticles and application in electrocatalysts, J. Phys. Chem. B, 109, 8774-8778 (2005).
  26. J. Y. Yoo, Y. K. Lee, and J. G. Kim, Synthesis and characterization of magnetic core-shell $ZnFe_2O_4@ZnO@SiO_2$ nanoparticles, J. Korean Chem. Soc., 59, 397-406 (2015). https://doi.org/10.5012/jkcs.2015.59.5.397
  27. S. M. Chin, E. S. Park, M. S. Kim, and J. S. Jurng, Photocatalytic degradation of methylene blue with $TiO_2$ nanoparticles prepared by a thermal decomposition process, Powder Technol., 201, 171-176 (2010). https://doi.org/10.1016/j.powtec.2010.03.034
  28. N. Chekir, O. Benhabiles, D. Tassalit, N. A. Laoufi, and F. Bentahar, Photocatalytic degradation of methylene blue in aqueous suspensions using $TiO_2$ and ZnO, Desalination Water Treat., 57, 1-7 (2016). https://doi.org/10.1080/19443994.2016.1119929
  29. C. Xu, G. P. Rangaiah, and X. S. Zhao, Photocatalytic degradation of methylene blue by titanium dioxide: experimental and modeling study, Ind. Eng. Chem. Res., 53, 14641-14649 (2014). https://doi.org/10.1021/ie502367x