DOI QR코드

DOI QR Code

Preparation of Cosmeceuticals Containing Broussonetia kazinoki Extracts: Optimization Using Central Composite Design Method

닥나무 추출물이 함유된 Cosmeceuticals의 제조: 중심합성계획모델을 이용한 최적화

  • Hong, Seheum (Department of Polymer Science and Engineering, Dankook University) ;
  • Park, Bo Ra (Department of Chemical Engineering, Dankook University) ;
  • Lee, Seung Bum (Department of Chemical Engineering, Dankook University)
  • Received : 2018.07.11
  • Accepted : 2018.08.13
  • Published : 2018.12.10

Abstract

In this paper, the stability criteria of cosmeceuticals emulsion containing Broussonetia kazinoki extracts was established using the central composite design model. As optimization conditions of the emulsification using the central composite design model, concentrations of the emulsifier and emulsion stabilizer were used as a quantitative factor while emulsion stability index (ESI) and polydispersity index (PDI) were used as a reaction value. The targeted values of ESI and PDI were estimated as over 60% and the minimum number, respectively. Optimized concentrations of the emulsifier and emulsion stabilizer were 3.73 and 3.07 wt%, respectively, from the emulsification optimization based on ESI and PDI values. The estimated reaction values of ESI and PDI were 60% and 0.585, respectively. As concentrations of the emulsifier and emulsion stabilizer increased, the stability of the emulsion prepared tended to increase. The emulsifier was one of the most influential factors for ESI than the emulsion stabilizer. On the other hand, the PDI value was similarly affected by both the emulsion and emulsion stabilizer. The ESI of the cosmeceuticals emulsion prepared under experimental conditions deduced from the central synthesis planning model showed at least about 45% of the stability. However, all of the emulsions were separated after 4 weeks from the initial preparation. When the concentration of the emulsifier was more than 3.72 wt%, the ESI value was over 60%. Also the layer separation rate decreased with increasing the emulsion stabilizer concentration.

본 연구에서는 중심합성계획모델을 사용하여 닥나무 추출물을 함유한 cosmeceuticals 유화액의 안정성 조건을 설정하였다. 중심합성계획모델을 이용한 유화 최적화 조건으로 계량인자는 유화제와 유화안정제의 농도로, 반응치는 ESI와 PDI로 설정하였으며 ESI의 목표값은 60% 이상, PDI의 목표값은 최소값으로 하였다. 유화 최적화 결과 유화제와 유화안정제의 농도는 각각 3.73, 3.07 wt%이었으며, 이때 예상 반응치 ESI는 60%, PDI는 0.585로 산출되었다. 유화제와 유화안정제의 농도가 증가할수록 제조한 유화액의 안정성은 증가하는 경향을 보였으며, 두 가지의 계량인자 중 ESI에 가장 큰 영향을 미치는 인자는 유화제였으며, PDI에 대한 두 인자의 영향은 유사하게 나타났다. 중심합성계획모델의 실험조건으로 제조한 cosmeceuticals 유화액의 ESI는 적어도 약 45% 이상의 안정성을 보였으나 제조 후 4주 뒤에는 모두 분리되었다. 유화제의 농도가 3.72 wt% 이상일 때 ESI의 값은 60% 이상으로 나타났으며, 유화안정제의 농도가 증가할수록 층 분리 속도는 감소하였다.

Keywords

GOOOB2_2018_v29n6_682_f0001.png 이미지

Figure 1. Variation of droplet size distribution with the various emulsions after 7 days.

GOOOB2_2018_v29n6_682_f0002.png 이미지

Figure 2. Variation of zeta potential with the various emulsions.

GOOOB2_2018_v29n6_682_f0003.png 이미지

Figure 3. Variation of turbidity with the various emulsions.

GOOOB2_2018_v29n6_682_f0004.png 이미지

Figure 4. Variation of emulsion stability index (ESI) with the various emulsions.

GOOOB2_2018_v29n6_682_f0005.png 이미지

Figure 5. Variation of polydispersity index (PDI) with various emulsions.

GOOOB2_2018_v29n6_682_f0006.png 이미지

Figure 6. Response surface for ESI and PDI of cosmeceuticals emulsion as a function of amount of emulsifier and emulsion stabilizer (C16H34O).

GOOOB2_2018_v29n6_682_f0007.png 이미지

Figure 7. Perturbation plot for the effect of variables on ESI and PDI of cosmeceuticals emulsion.

GOOOB2_2018_v29n6_682_f0008.png 이미지

Figure 8. Optimization graph of response surface for ESI and PDI of cosmeceuticals emulsion.

Table 1. Basic Experimental Setup of Response Surface Methodology

GOOOB2_2018_v29n6_682_t0001.png 이미지

References

  1. K.-Y. Kim and N.-K. Lee, Herbal extracts research trend that have effects on melanin production and control, Korean J. Aesthet. Cosmetol., 12(4), 453-461 (2017).
  2. H.-J. Lee, J.-H. Park, D.-I. Jang, and J.-H. Ryu, Antioxidant components from Broussonetia kazinoki, Yakhak Hoeji, 41(4), 439-443 (1997).
  3. J.-Y. Park, H. J. Yuk, H. W. Ryu, S. H. Lim, K. S. Kim, K. H. Park, Y. B. Ryu, and W. S. Lee, Evaluation of polyphenols from Broussonetia papyrifera as coronavirus protease inhibitors, J. Enzyme Inhib. Med. Chem., 32(1), 504-512 (2017). https://doi.org/10.1080/14756366.2016.1265519
  4. J. Ikuta, Y. Hano, T. Nomura, Y. Kawakami, and T. Sato, Components of Broussonetia kazinoki SIEB. I.: Structures of two new isoprenylated flavans an d five new isoprenylated 1, 3-diphenylpropane derivatives, Chem. Pharm. Bull, 34(5), 1968-1979 (1986). https://doi.org/10.1248/cpb.34.1968
  5. S. A. Park, J. H. Ha, and S. N. Park, Antioxidative activity and component analysis of Broussonetia kazinoki SIEB Extracts, Appl. Chem. Eng., 24(2), 177-183 (2013).
  6. A. Nesterenko, A. Drelich, H. Clausse, D. Lu, and I. Pezron, Influence of a mixed particle/surfactant emulsifier system on water- in-oil emulsion stability, Colloids Surf. A, 457, 49-57 (2014). https://doi.org/10.1016/j.colsurfa.2014.05.044
  7. A. Aguilera-Miguel, E. López-Gonzalez, V. Sadtler, A. Durand, P. Marchal, C. Castel, and L. Choplin, Hydrophobically modified dextrans as stabilizers for O/W highly concentrated emulsions. Comparison with commercial non-ionic polymeric stabilizers, Colloids Surf. A, 550, 155-166 (2018). https://doi.org/10.1016/j.colsurfa.2018.04.022
  8. P. A. Leggieri, M. Senra, and L. Soh, Cloud point and crystallization in fatty acid ethyl ester biodiesel mixtures with and without additives, Fuel, 222, 243-249 (2018). https://doi.org/10.1016/j.fuel.2018.02.100
  9. A. C. Braun, D. Ilko, B. Merget, H. Gieseler, O. Germershaus, U. Holzgrabe, and L. Meinel, Predicting critical micelle concentration and micelle molecular weight of polysorbate 80 using compendial methods, Eur. J. Pharm. Biopharm., 94, 559-568 (2015). https://doi.org/10.1016/j.ejpb.2014.12.015
  10. A. Zdziennicka, K. Szymczyk, J. Krawczyk, and B. Janczuk, Critical micelle concentration of some surfactants and thermodynamic parameters of their micellization, Fluid Phase Equilib., 322-323, 126-134 (2012). https://doi.org/10.1016/j.fluid.2012.03.018
  11. P. S. Chang, M. G. Shin, and W. M. Lee, Relationship between emulsion stability index and HLB value of emulsifier in the analysis of W/O emulsion stability, J. Korean Soc. Anal. Sci., 7(2), 237-243 (1994).
  12. G. Lefebvre, J. Riou, G. Bastiat, E. Roger, K. Frombach, J.-C. Gimel, P. Saulnier, and B. Calvignac, Spontaneous nano-emulsification: Process optimization and modeling for the prediction of the nanoemulsion's size and polydispersity, Int. J. Pharm., 534(1-2), 220-228 (2017). https://doi.org/10.1016/j.ijpharm.2017.10.017
  13. H. Sis and M. Birinci, Effect of nonionic and ionic surfactants on zeta potential and dispersion properties of carbon black powders, Colloids Surf. A, 341(1-3), 60-67 (2009). https://doi.org/10.1016/j.colsurfa.2009.03.039
  14. J. Y. Yeon, B. R. Shin, T. G. Kim, and J. M. Seo, A study on emulsion stability of O/W and W/S emulsion according to HLB of emulsifier, J. Soc. Cosmet. Sci. Korea, 40(3), 227-236 (2014) https://doi.org/10.15230/SCSK.2014.40.3.227
  15. M. N. Yukuyama, D. D. M. Ghisleni, T. J. A. Pinto, and N. A. Bou-Chacra, Nanoemulsion: Process selection and application in cosmetics - A Review, Int. J. Cosmet. Sci., 38, 13-24 (2016). https://doi.org/10.1111/ics.12260