DOI QR코드

DOI QR Code

An Analysis of Effects of Emergency Fine Dust Reduction Measures and National Petition Using Regression Analysis and Text Mining

회귀분석과 텍스트마이닝을 활용한 미세먼지 비상저감조치의 실효성 및 국민청원 분석

  • 김애니 (동덕여자대학교 정보통계학과) ;
  • 정소희 (동덕여자대학교 정보통계학과) ;
  • 최현빈 (동덕여자대학교 정보통계학과) ;
  • 김현희 (동덕여자대학교 정보통계학과)
  • Received : 2018.07.06
  • Accepted : 2018.08.03
  • Published : 2018.11.30

Abstract

Recently, the Seoul government implemented 'Free Public Transportation' policy and 'Citizen Participatory Alternative-Day-No-Driving' system as 'Emergency Fine Dust Reduction Measures'. In this paper, after identifying the effectiveness of the two traffic policies, suggestions for direction of future fine dust policy were made. The effect of traffic on the fine dust was analyzed by regression analysis and the responses to the two traffic policies and petitions were analyzed using text mining. Our experimental results show that the responses to the policy were mostly negative, and the influence of the domestic factors was considerable unlike expectation of citizens. Moreover, the result made us possible to know people's specific needs on fine dust reduction policy. Finally, based on the result, the suggestions for fine dust reduction policy direction were provided.

최근 서울시에서는 '미세먼지 비상저감조치'로 '대중교통 무료' 정책과 '시민 참여형 차량 2부제'를 시행하였다. 본 논문에서는 두 교통정책에 대한 실효성을 파악한 뒤, 향후 미세먼지 정책의 방향을 제시하였다. 교통이 미세먼지에 미치는 영향은 회귀분석으로, 두 정책에 대한 시민들의 반응과 향후 정책에 대한 시민들의 의견은 텍스트마이닝 기법을 통해 알아보았다. 분석 결과, 정책에 대한 시민들의 의견은 대부분 부정적이었고 국외 요인이 미세먼지의 주된 원인이라는 시민들의 생각과 달리 국내 요인의 영향도 상당하였다. 또 국민청원을 통해 시민들이 원하는 구체적인 정책의 내용을 알 수 있었다. 위 결과를 토대로 향후 미세먼지 정책이 나아갈 방향을 제시하였다.

Keywords

JBCRJM_2018_v7n11_427_f0001.png 이미지

Fig. 1. Number of Likes/Dislikes and Comment for Each Policy

JBCRJM_2018_v7n11_427_f0002.png 이미지

Fig. 3. Coefficients of Stepwise Regression Analysis

JBCRJM_2018_v7n11_427_f0003.png 이미지

Fig. 4. Clusters of Topic

JBCRJM_2018_v7n11_427_f0004.png 이미지

Fig. 2(B). Word Cloud of Alternative-Day-No-Driving System

Table 1. Air Pollution Source Categories

JBCRJM_2018_v7n11_427_t0001.png 이미지

Table 2. Reclassification of KSIC industry

JBCRJM_2018_v7n11_427_t0002.png 이미지

Table 3. Properties of Each Topics in Topic Modeling

JBCRJM_2018_v7n11_427_t0003.png 이미지

References

  1. Fine Dust Information Center of Seoul, "The ways of high-density fine dust(PM2.5) matter improvement in Seoul," Press Release of Seoul(2018.2.27.), 2018.
  2. Fine Dust Information Center of Seoul, "The evolution of 'Emergency fine dust reduction measures' to '8 Citizen-led measures'," Press Release of Seoul(2018.2.27.), 2018.
  3. A. Gelman and J. Hill, "Linear regression: before and after fitting the model," in Data Analysis Using Regression and Multilevel/Hierarchical Models, 1st ed., Cambridge University Press, pp.53-73, 2006.
  4. H. Choi, G. Park, S. Choi, and S. Kim, "Research on the big data collecting system for measuring of broadcast content influence," The Korean Institutute of Broadcast and Media Engineers Conference, pp.171-174, 2014.
  5. Y. Cha, J. Lee, J. Choi, and H. Kim, "A Topic Modeling Approach to Marketing Strategies for Smartphone Companies," Knowledge Management Research, Vol.16, No.4, pp.69-87, 2015. https://doi.org/10.15813/kmr.2015.16.4.005
  6. M. Shin, C. Lee, H. Ha, C. Choe, and Y. Kim, "The Influence of Meteorological Factors on PM10 Concentration in Incheon," Journal of Korean Society for Atmospheric Environment, Vol.23, No.3, pp.322-331, 2007. https://doi.org/10.5572/KOSAE.2007.23.3.322
  7. I. Park, "What is the root cause of high-density fine dust in Seoul metropolitan region?," Journal of Korean Society for Atmospheric Environment, Vol.32, No.3, pp.352-353, 2016.
  8. S. Lee, "Characterization of Non-exhaust Particulate Matters (PM) Generated from Tire and Brake," Journal of the Korean Society of Automotive Engineers, Vol.39, No.8, pp.34-38, 2017. https://doi.org/10.4491/KSEE.2017.39.1.34
  9. S. Kwon, M. Kim, G. Jung, S. Hong, S. Hong, and M. Chae, "Dust emission and vegetation indices of different regions," The Conference of Korean Society of Soil Science and Fertilizer, pp.279-279, 2012.
  10. K. Jang and J. Yeo, "The Effects of Korean and Chinese Economic Growth on Particulate Matter in Korea: Time Series Cointegration Analysis," Journal of Environmental Policy and Administration, Vol.23, No.1, pp.97-117, 2015. https://doi.org/10.15301/jepa.2015.23.1.97
  11. S. Park and H. Shin, "Analysis of the Factors Influencing PM 2.5 in Korea: Focusing on Seasonal Factors," Journal of Environmental Policy and Administration, Vol.25, No.1, pp.227-248, 2017. https://doi.org/10.15301/jepa.2017.25.1.227
  12. H. Cho, Y. Chung, J. Lee, and J. Lee, "Sentiment Analysis Using News Comments for Public Opinion Mining," KIIS Spring Conference, Vol.23, No.1, pp.149-150, 2013.
  13. Statistic Korea, "Number of businesses and employees by city, industry, and business division ('06 -)," 2017 [Internet], http://kostat.go.kr.
  14. Air Korea "Domestic/International air quality," [Internet], http://www.airkorea.or.kr, 2018.
  15. National Institute of Environmental Research, "National Air Pollutants Emission Service," 2018 [Internet], http://airemiss.nier.go.kr.
  16. J. Kim, "Assessment and Estimation of Particulate Matter Formation Potential and Respiratory Effects from Air Emission Matters in Industrial Sectors and Cities/Regions," Journal of Korean Society of Environmental Engineers, Vol.39, No.4, pp.220-228, 2017. https://doi.org/10.4491/KSEE.2017.39.4.220
  17. Y. Park, "The direction of the government's policy to promote natural gas-powered buses," Policy Report of the Ministry of Environment (2003.05.15.), 2003.
  18. Cheongwadae, "Petition and Proposal," 2018 [Internet], http://www.president.go.kr.
  19. E. Vargiu and M. Urru, "Exploiting web scraping in a collaborative filtering-based approach to web advertising," Artificial Intelligence Research, Vol.2, No.1, pp.44-54, 2013.