DOI QR코드

DOI QR Code

Comparative Study on Biological Technology in Artificial Floating Island: Application of Media and Daphnia to Algal Biomass Control

인공부도의 생물학적 처리 기술 비교 연구: 인공부도의 조류의 저감 효과 개선을 위한 여재와 물벼룩 적용

  • Jin, Mei-Yan (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Chang, Kwang-Hyeon (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Kim, Tae-Hoon (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Oh, Jong-Min (Department of Environmental Science and Engineering, Kyung Hee University)
  • ;
  • 장광현 (경희대학교 환경학 및 환경공학과) ;
  • 김태훈 (경희대학교 환경학 및 환경공학과) ;
  • 오종민 (경희대학교 환경학 및 환경공학과)
  • Received : 2017.10.11
  • Accepted : 2018.02.06
  • Published : 2018.02.28

Abstract

Media (bio-stone), aquatic macrophytes (Oenanthe javanica) and herbivorous cladoceran (Daphnia similoides) have been used in artificial floating island (AFI) systems for water pollution control. Efficiency in chl-a concentration controlling of AFI was tested using different combinations of each device: G-BD-mixture bio-stone and Daphnia similoides, G-OB-mixture Oenanthe javanica and bio-stone, G-BOD-mixture bio-stone, Oenanthe javanica and Daphnia similoides, and the out-put water quality improvement was compared with G-C-control (no device was applied). We analyzed removal efficiency of chl-a concentration and nutrient concentrations in the artificially eutrophic water in the laboratory experimental facility. The results showed average removal rates of Chlorophyll a, TN and TP for different four groups: 69.24%, 16.61%, -0.61%; 68.39%, 14.11%, 10.52%; 78.30%, 6.69%, 25.09%; 35.42%, -3.47%, -25.18%, respectively. The results have suggested that the mixture of media, plants and zooplankton is the most efficient combination for Chlorophyll a control, while the mixture of macrophytes and bio-stone have better efficiency nutrient control.

호소의 경관성을 향상 시킬 수 있은 자연정화법인 인공식물섬을 설계하고 수질개선 효율을 향상시키기 위하여 여재, 식생과 물벼룩을 혼용하는 방법을 개발하였다. 따라서 조류 제거 효율을 알아보기 위한 각 혼합시스템은 G-BD-여재와 물벼룩, G-OB-식물과 여재, G-BOD-여재 식물과 물벼룩, G-C-대조군으로 실험 및 평가하였다. 각 혼합시스템 현장적용성을 평가하기 위하여 chl-a, TN과 TP의 제거효율을 조사 하였고, 그 결과 G-BD의 평균제거 효율은 69.24%, 16.61%, -0.61%; G-OB는 평균 68.39%, 14.11%, 10.52%; G-BOD는 평균 78.30%, 6.69%, 25.09%; G-C는 평균 35.42%, -3.47%, -25.18%로 조사되었다. 결과에 따라 제안하면 여재, 식생과 동물플랑크톤을 혼용한 시스템이 조류제어방면에서 효율적으로 나타났다. 하지만 영양염류 제어관리에서는 식생과 여재를 혼합한 시스템이 가장 효율적이다.

Keywords

References

  1. Ahn TS, Yoo JJ, Kim OS, Choi S, Byeon MS. 2004. New Microbial Ecosystem Created by Artificial Floating Island. Research Report. Shinshu University, 5-6.Japan
  2. Cai Q, Liu R, Li D. 1992. Comprehensive Evaluation of Trophic States of Water Systems in Fengqiu Experimental Area of Huang-Huai-Hai Plain, J Lake Sci. 4 (2): 46-50. https://doi.org/10.18307/1992.0206
  3. Hu GJ, Zhou M, Hou HB, Zhu X, Zhang WH. 2010. An Ecological Floating-bed made from Dredged Lake Sludge for Purification of Eutrophic Water. J Ecol. Eng. 36 (10): 1448-1458. https://doi.org/10.1016/j.ecoleng.2010.06.026
  4. Hu MH, Yuan JH, Yang XE, He ZL. 2010. Effects of Temperature on Purification of Eutrophic Water by Floating Eco-island System. J Acta Ecol. Sin. 30 (6): 310-318. https://doi.org/10.1016/j.chnaes.2010.06.009
  5. Horne AJ, Goldman CR. 1994. Limnology (2nd Ed). McGraw-Hill. New York.
  6. Kim TH, Ahn TW, Jung JH, Choi IS, Oh JM. 2010. Research on Improvement of Lake Water Quality Using Artificial Floating Island. Korean J Limnol. 43 (2): 263-270. [Korean Literature]
  7. Li XN, Song HL, Li W, Lu, XW, Nishimura O. 2010. An Integrated Ecological Floating-bed Employing Plant, Freshwater Clam and Biofilm Carrier for Purification of Eutrophic Water. J Ecol. Eng. 36 (4): 382-390. https://doi.org/10.1016/j.ecoleng.2009.11.004
  8. Lijklema L. 1995. Development and Eutrophication: Experiences and Perspectives. J Water Sci. Technol. 31 (9): 11-15.
  9. Mallison CT, Stocker RK, Cichra CE. 2001. Physical and Vegetative Characteristics of Floating Islands. J Aquat. Plant Manag. 39: 107-111.
  10. Mitsch WJ, Lefeuvre JC, Bouchard V. 2002. Ecological Engineering Applied to River and Wetland Restoration. J Ecol. Eng. 18 (5): 529-541. https://doi.org/10.1016/S0925-8574(02)00018-6
  11. Sun LP, Liu Y, Jin H. 2009. Nitrogen Removal from Polluted River by Enhanced Floating Bed Grown Canna. J Ecol. Eng. 35 (1): 135-140. https://doi.org/10.1016/j.ecoleng.2008.09.016
  12. Sierp MT, Qin JG, Recknagel F. 2009. Biomanipulation: a Review of Biological Control Measures in Eutrophic Waters and the Potential for Murray cod Maccul-lochella peelii peelii to Promote Water Quality in Temperate Australia. Rev. Fish Biol. Fisher. 19 (2): 143-165. https://doi.org/10.1007/s11160-008-9094-x
  13. Sterner RW. 1990. The Ratio of Nitrogen to Phosphorus Resupplied by Herbivores: Zooplankton and the Algal Competitive Arena. J Am. Nat. 136 (2): 209-229. https://doi.org/10.1086/285092
  14. Schmidt I, Sliekers O, Schmid M, Cirpus I, Strous M, Bock E, Kuenen JG, Jetten MSM. 2002. Aerobic and Anaerobic Ammonia Oxidizing Bacteria-competitors or Natural Partners. J FEMS Microbiol. Ecol. 39 (3): 175-181.
  15. Watling L. 1975. Artificial Islands: Information Needs and Impact Criteria. J Mar Pollut. Bull. 6 (9): 139-142. https://doi.org/10.1016/0025-326X(75)90171-X
  16. Yang XE, Wu X, Hao HL, He ZL. 2008. Mechanisms and Assessment of Water Eutrophication. J Zhejiang Univ.-Sci. B 9 (3): 197-209. https://doi.org/10.1631/jzus.B0710626
  17. Zhu LD, Li ZH, Ketola T. 2011. Biomass Accumulations and Nutrient Uptake of Plants Cultivated on Artificial Floating Beds in China's Rural Area. J Ecol. Eng. 37 (10): 1460-1466. https://doi.org/10.1016/j.ecoleng.2011.03.010