DOI QR코드

DOI QR Code

Environmental Impacts of Brine from the Seawater Desalination Plants

해수담수화 시설에서 생성된 농축수의 환경적 영향

  • 박선영 (한국환경정책.평가연구원) ;
  • 서진성 (한국환경정책.평가연구원) ;
  • 김태윤 (한국환경정책.평가연구원)
  • Received : 2017.10.26
  • Accepted : 2017.12.27
  • Published : 2018.02.28

Abstract

The need for seawater desalination is increasing in terms of securing various water resources, but few studies are available as for the environmental impact of hypersaline concentrated water (brine) discharged from desalination plants. Domestic studies are concentrated mainly on toxicity evaluation that phytoplankton, zooplankton larvae and green algae (Ulva pertusa) are negatively affected by concentrated water. The mortality of Paralichthys olivaceus showed a linear relationship with increasing salinity, and Oryzias latipes died 100% at concentrations above 60 psu. Foreign studies included monitoring cases as well as toxicity evaluations. The number of species decreased around the area where the concentrated water discharged. The hypersaline concentrated water affects the pelagic and benthic organisms. However, the fishes escaped when exposed to salinity, and the pelagic and benthic organisms resistant to salinity survived the hypersaline environment. The salinity limit and distance from the outlet was presented as the regulatory standard for bine discharge. There were differences in regulatory standards among country and seawater desalination plants, and these regulatory standards have been strengthened recently. In particular, California Water Boards were revised to ensure that the maximum daily salinity concentration does not exceed 2 psu above the ambient salinity level within 100 m of the outlet.

다양한 수자원 확보 측면에서 해수담수화의 필요성이 증가하고 있으나 해수담수화 시설에서 배출되는 농축수에 대한 환경적 영향에 대한 고찰은 미흡하다. 본 연구에서는 국내 외 사례 조사를 통하여 고염분 농축수로 인한 환경적 영향 및 배출 규제를 고찰하였다. 국내에서는 독성평가 중심의 연구가 진행되었으며 식물플랑크톤, 동물플랑크톤 유생, 녹조구멍갈파래가 고염농축수에 영향을 받는 것으로 관측되었다. 또한 넙치 치사율이 염분 증가에 따라 선형관계를 보였으며 송사리는 60 psu 이상의 농도에서 100% 사망하였다. 국외에서는 독성평가뿐만 아니라 모니터링 사례도 있었으며 이들 사례를 저서생물군집, 연체동물, 극피동물, 어류, 해조 해초류로 분류하여 정리하였다. 전반적으로 농축수가 배출되는 인근지역에서는 종풍부도가 저하되었으며 고염분의 농축수가 해양생물에 영향을 주는 것으로 나타났다. 그러나 이동성이 강한 성어의 경우는 염분에 노출되면 회피하고 염분에 대한 내성을 가진 해양생물들은 고염분의 해수환경에도 생존하였다. 농축수에 대한 규제기준은 염분 한계와 배출구에서의 거리로 표현되는 준수지점으로 제시되고 있었다. 국가별, 해수담수화 시설별로 규제기준에 차이가 있었으며 최근의 경향은 규제기준을 강화하는 추세이다. 특히 california water boards에서는 일일 최대 염분농도가 배출구 주변 100 m 이내에서 주변 염분농도보다 2 psu를 초과하지 못하도록 규정개정을 실시하였다.

Keywords

References

  1. ANZECC/ARMCANZ. 2000. Australian and New Zealand guidelines for fresh and marine water quality. Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, www.mincos.gov.au(last accessed on 12.09.2009).
  2. Basson PW, Burchard JE Jr, Hardy JT, Price ARG. 1977. Biotopes of the Western Arabian Gulf; marine life and environments of Saudi Arabia.
  3. Bilyard GR. 1987. The value of benthic infauna in marine pollution monitoring studies. Marine Pollution Bulletin. 18(11): 581-585. https://doi.org/10.1016/0025-326X(87)90277-3
  4. Bleninger T, Jirka GH, Lattemann S. 2010. Environmental planning, prediction and management of brine discharges from desalination plants. Middle East Desalination Research Center (MEDRC): Muscat, Sultanate of Oman.
  5. Busan. 2010. Statement on the sea area utilization for 10MIGD seawater desalination plant project. [Korean Literature]
  6. California Regional Water Quality Control Board. 2006. Waste discharge requirements for the Poseidon Resources Corporation, Carlsbad desalination plant project, discharge to the Pacific Ocean via the Encina power station discharge channel. NPDES No. CA0109223.
  7. California Water Boards. 2015. California Oean Plan 2015. State Water Resources Contral Board in California EPA. http://www.waterboards.ca.gov/water_issues/programs/ocean/desalination/(last accessed on 09.15. 2017).
  8. Cambridge ML, Zavala-Perez A, Cawthray GR, Mondon J, Kendrick GA. 2016. Effects of high salinity from desalination brine on growth, photosynthesis, water relations and osmolyte concentrations of seagrass Posidonia australis. Marine Pollution Bulletin. 115(1): 252-260. https://doi.org/10.1016/j.marpolbul.2016.11.066
  9. Chesher RH. 1971. Biological impact of a largescale desalination plant at Key West, Florida. Elsevier oceanography series.
  10. City of Carlsbad and Poseidon Resources. 2005. Environmental impact report for the Carlsbad seawater desalination facility.
  11. Cooley H, Ajami N, Heberger M. 2013. Key issues in seawater desalination in California: marine impacts. Pacific Institute Oakland, CA, 32.
  12. Cooley H, Gleick P, Wolff G. 2006. Desalination with a grain of salt: a california perspective. Pacific Institute Oakland, CA.
  13. Dawoud MA, Al Mulla MM. 2012. Environmental impacts of seawater desalination: Arabian Gulf case study. International Journal of Environment and Sustainability. 1(3): 22-37.
  14. Delft Hydraulics. 2007. Eco-marine reconnaissance survey Al Qair (Saudi Arabia). Report Z3974.
  15. Dupavillon JL, Gillanders BM. 2009. Impacts of seawater desalination on the giant Australian cuttlefish Sepia apama in the upper Spencer Gulf, South Australia. Marine Environmental Research. 67(4): 207-218. https://doi.org/10.1016/j.marenvres.2009.02.002
  16. Einav R, Lokiec F. 2003. Environmental aspects of a desalination plant in Ashkelon. Desalination. 156(1-3): 79-85. https://doi.org/10.1016/S0011-9164(03)00328-X
  17. Fernandez-Torquemada Y, Sanchez-Lizaso JL, Gonzalez-Correa JM. 2005. Preliminary results of the monitoring of the brine discharge produced by the SWRO desalination plant of Alicante (SE Spain). Desalination. 182(1-3): 395-402. https://doi.org/10.1016/j.desal.2005.03.023
  18. Fernandez-Torquemada Y, Sanchez-Lizaso JL. 2006. Effects of salinity on growth and survival of Cymodocea nodosa (Ucria) Ascherson and Zostera noltii Hornemann. Biologia Marina Mediterranea. 13(4): 46-47
  19. Gacia E, Invers O, Manzanera M, Ballesteros E, Romero J. 2007. Impact of the brine from a desalination plant on a shallow seagrass (Posidonia oceanica) meadow. Estuarine, Coastal and Shelf Science. 72(4): 579-590. https://doi.org/10.1016/j.ecss.2006.11.021
  20. GCD Alliance. 2006. Material change of use application, Gold Coast desalination project. www.goldcoast.qld.gov.au (last accessed on 12.09.2009).
  21. Hoepner T, Lattemann S. 2002. Chemical impacts from seawater desalination plants? a case study of the northern Red Sea. Desalination. 152(1-3): 133-140. https://doi.org/10.1016/S0011-9164(02)01056-1
  22. Hoepner T. 1999. A procedure for environmental impact assessments (EIA) for seawater desalination plants. Desalination. 124(1-3): 1-12. https://doi.org/10.1016/S0011-9164(99)00083-1
  23. Hopner T, Windelberg J. 1997. Elements of environmental impact studies on coastal desalination plants. Desalination. 108(1): 11-18. https://doi.org/10.1016/S0011-9164(97)00003-9
  24. Iso S, Suizu S, Maejima A. 1994. The lethal effect of hypertonic solutions and avoidance of marine organisms in relation to discharged brine from a destination plant. Desalination. 97(1-3): 389-399. https://doi.org/10.1016/0011-9164(94)00102-2
  25. Jenkins S, Paduan J, Roberts P, Schlenk D, Weis J. 2012. Management of brine discharges to coastal waters recommendations of a science advisory panel. Southern California coastal water research project. Costa Mesa, CA.
  26. Kastner C. 2009. Meerwasserentsalzungsanlagen. Ableitung umweltrelevanter Standards. Diplomarbeit zur Erlangung des akademischen Grades Diplom-Geookologin
  27. Kim SH. 2016. Transforming brines from seawater desalination plants to resources. KSCE Journal of Civil Engineering. 64(2): 25-29. [Korean Literature]
  28. Koch MS, Schopmeyer SA, Kyhn-Hansen C, Madden CJ, Peters JS. 2007. Tropical seagrass species tolerance to hypersalinity stress. Aquatic Botany. 86(1): 14-24. https://doi.org/10.1016/j.aquabot.2006.08.003
  29. Kwon SH, Lee JH, Yu OH. 2017. Environmental effects on the benthic polychaete communities around the power plant areas in the East Sea of Korea. The Sea. 22(1): 18-30. [Korean Literature] https://doi.org/10.7850/jkso.2017.22.1.018
  30. Latorre M. 2005. Environmental impact of brine disposal on Posidonia seagrasses. Desalination. 182(1-3): 517-524. https://doi.org/10.1016/j.desal.2005.02.039
  31. Lattemann S, Hopner T. 2008. Environmental impact and impact assessment of seawater desalination. Desalination. 220(1-3): 1-15. https://doi.org/10.1016/j.desal.2007.03.009
  32. Lattemann S, Kennedy MD, Schippers JC, Amy G. 2010. Global desalination situation. Sustainability Science and Engineering. 2: 7-39.
  33. Lee SH. 2016. Seawater desalination technology for diversification of water source. Magazine of Korea Water Resources Association, 49(1): 29-38. [Korean Literature] https://doi.org/10.3741/JKWRA.2016.49.1.29
  34. Maeng JH, Kim TY, Seo DH, Seo J, Son MH, Kang TS. 2013. A Study on measures to predict and mitigate marine environmental impacts of cooling water discharges from power plants. Korea Environmental Institute. [Korean Literature]
  35. Mandelli EF. 1975. The effects of desalination brines on Crassostrea virginica (Gmelin). Water Research. 9(3): 287-295. https://doi.org/10.1016/0043-1354(75)90050-0
  36. Masini RJ, Anderson PK, McComb AJ. 2001. A Halodule-dominated community in a subtropical embayment: physical environment, productivity, biomass, and impact of dugong grazing. Aquatic Botany. 71(3): 179-197. https://doi.org/10.1016/S0304-3770(01)00181-4
  37. Miri R, Chouikhi A. 2005. Ecotoxicological marine impacts from seawater desalination plants. Desalination. 182(1-3): 403-410. https://doi.org/10.1016/j.desal.2005.02.034
  38. MOLIT (Ministry of Land, Infrastructure and Transport). 2016. The long-term comprehensive plan for water resources(2001-2020) 3rd revision plan. p.131. [Korean Literature]
  39. Naser H A. 2013. Effects of multi-stage flash and reverse osmosis desalinations on benthic assemblages in Bahrain, Arabian Gulf. Journal of Environmental Protection. 4(2): 180-187. https://doi.org/10.4236/jep.2013.42021
  40. Naser H A. 2014. Marine ecosystem diversity in the Arabian Gulf: Threats and conservation. In Biodiversity-The dynamic balance of the planet. InTech.
  41. NRC (National Research Council). 2008. Desalination: a national perspective. National Academies Press.
  42. Okinawa Bureau for Enterprises. 1997. Environmental impact assessment report for the seawater desalination project in Okinawa, Japan, executive summary.
  43. Palomar P, Losada IJ. 2011. Impacts of brine discharge on the marine environment: modelling as a predictive tool. In Desalination, trends and technologies. InTech.
  44. Pillard DA, Dufresne DL, Tietge JE, Evans JM. 1999. Response of mysid shrimp (Mysidopsis bahia), sheepshead minnow (Cyprinodon variegatus), and inland silverside minnow (Menidia beryllina) to changes in artificial seawater salinity. Environmental toxicology and chemistry. 18(3): 430-435. https://doi.org/10.1002/etc.5620180310
  45. POSCO. 2012. Environmental review report for seawater desalination plant projects in Gwangyang Works. [Korean Literature]
  46. Raventós N, Macpherson E, Garcia-Rubies A. 2006. Effect of brine discharge from a desalination plant on macrobenthic communities in the NW Mediterranean. Marine Environmental Research. 62(1): 1-14. https://doi.org/10.1016/j.marenvres.2006.02.002
  47. Riera R, Tuya F, Sacramento A, Ramos E, Rodriguez M, Monterroso O. 2011. The effects of brine disposal on a subtidal meiofauna community. Estuarine, Coastal and Shelf Science. 93(4): 359-365. https://doi.org/10.1016/j.ecss.2011.05.001
  48. Ruso YDP, De la Ossa Carretero JA, Gimenez- Casalduero F, Sanchez-Lizaso JL. 2007. Spatial and temporal changes in infaunal communities inhabiting soft-bottoms affected by brine discharge. Marine Environmental Research. 64(4): 492-503. https://doi.org/10.1016/j.marenvres.2007.04.003
  49. Ruso YDP, De la Ossa Carretero JA, Gimenez- Casalduero F, Sanchez-Lizaso JL. 2008. Effects of a brine discharge over soft bottom polychaeta assemblage. Environmental Pollution. 156(2): 240-250. https://doi.org/10.1016/j.envpol.2007.12.041
  50. Sanchez-Lizaso JL, Romero J, Ruiz J, Gacia E, Buceta JL, Invers O, Fernandez-Torquemada Y, Mas J, Ruiz-Mateo A, Manzanera M. 2008. Salinity tolerance of the Mediterranean seagrass Posidonia oceanica: recommendations to minimize the impact of brine discharges from desalination plants. Desalination. 221(1-3): 602-607. https://doi.org/10.1016/j.desal.2007.01.119
  51. Shalom-Gordon N, Dubinsky Z. 1993. Diurnal pattern of salt secretion in leaves of the black mangrove, Avicennia marina, on the Sinai coast of the Red Sea. Pacific Science. 47(1): 51-58.
  52. Sultanate of Oman. 2005. Ministerial Decision No: 159/2005, Promulgating the bylaws to discharge liquid waste in the marine environment. Ministry of Regional Municipalities, Environment and Water Resources.
  53. Talavera JP, Ruiz JQ. 2001. Identification of the mixing processes in brine discharges carried out in Barranco del Toro Beach, south of Gran Canaria (Canary Islands). Desalination. 139(1): 277-286. https://doi.org/10.1016/S0011-9164(01)00320-4
  54. Walker DI, McComb AJ. 1990. Salinity response of the seagrass Amphibolis antarctica (Labill.) Sonder et Aschers.: an experimental validation of field results. Aquatic Botany. 36(4): 359-366. https://doi.org/10.1016/0304-3770(90)90052-M
  55. Watereuse Association. 2011. Seawater concentrate manatement. p.38.
  56. WEC (Welker Environmental Consultancy). 2002. Perth metropolitan desalination proposal environmental protection statement. Prepared by Welker Environmental Consultancy for the Water Cooperation.
  57. Wetterau G. 2011. Desalination of Seawater: M61 (Vol. 61). American Water Works Association.
  58. Yoon SJ, Park GS. 2011. Toxicity and behavioral changes of Medaka (Oryzias latipes) by brine exposure. The Sea. 16(1): 39-51. [Korean Literature] https://doi.org/10.7850/jkso.2011.16.1.039