DOI QR코드

DOI QR Code

Development of Large-scale Ni-Al Alloy Fabrication Process at Low Temperature

대용량 저온 Ni-Al 합금 분말 제조 공정 개발

  • LEE, MIN JAE (Fuel Cell Research Center, Korea Institute of Science and Technology) ;
  • KANG, MIN GOO (Fuel Cell Research Center, Korea Institute of Science and Technology) ;
  • JANG, SEONG-CHEOL (Fuel Cell Research Center, Korea Institute of Science and Technology) ;
  • HAM, HYUNG CHUL (Fuel Cell Research Center, Korea Institute of Science and Technology) ;
  • AHN, JOONG WOO (Department of Interdisciplinary ECO Science, Woonjung Green Campus, Sungshin University) ;
  • NAM, SUK WOO (Fuel Cell Research Center, Korea Institute of Science and Technology) ;
  • YOON, SUNG PIL (Fuel Cell Research Center, Korea Institute of Science and Technology) ;
  • HAN, JONGHEE (Fuel Cell Research Center, Korea Institute of Science and Technology)
  • 이민재 (한국과학기술연구원 연료전지연구센터) ;
  • 강민구 (한국과학기술연구원 연료전지연구센터) ;
  • 장성철 (한국과학기술연구원 연료전지연구센터) ;
  • 함형철 (한국과학기술연구원 연료전지연구센터) ;
  • 안중우 (성신여자대학교 운정그린캠퍼스 청정융합과학과) ;
  • 남석우 (한국과학기술연구원 연료전지연구센터) ;
  • 윤성필 (한국과학기술연구원 연료전지연구센터) ;
  • 한종희 (한국과학기술연구원 연료전지연구센터)
  • Received : 2017.12.12
  • Accepted : 2018.02.28
  • Published : 2018.02.28

Abstract

In this study, the kg-class Ni-Al alloy fabrication process at low temperature was developed from the physical mixture of Ni and Al powders. The AlCl3 as an activator was used to reduce the temperature of alloy synthesis below the melting temperature of Ni and Al elements (<$500^{\circ}C$). Mixed phase of Ni3Al intermetallic and Ni-Al solid-solution were identified in the XRD pattern analysis. Furthermore, from the analysis of SEM and particle size analyzer, we found that the particle size of synthesized alloy powders was not changed compared to the initial size of Ni particle after the formation of alloy powder at $500^{\circ}C$. In the creep test, the anode (which was fabricated by the prepared Ni-Al alloy powders in this study) displayed the enhanced creep resistance compared to the conventional anode.

Keywords

References

  1. Y. S. Kim and H. S. Chun, "Sintering characteristics of a porous Ni/Ni3Al anode for molten carbonate fuel cells", J. Power Sources, Vol. 84, No. 1, 1999, pp. 80-86. https://doi.org/10.1016/S0378-7753(99)00306-7
  2. G. Kim, Y. Moon, and D. Lee, "Preparation of creep-resistant Ni-5 wt.% Al anodes for molten carbonate fuel cells", J. Power Sources, Vol. 104, No. 2, 2002, pp. 181-189. https://doi.org/10.1016/S0378-7753(01)00910-7
  3. J. H. Wee, "Creep and sintering resistance of a Ce added anode electrode for molten carbonate fuel cell", Materials Chemistry and Physics, Vol. 98, No. 2, 2006, pp. 273-278. https://doi.org/10.1016/j.matchemphys.2005.09.018
  4. H. V. P. Nguyen, S. A. Song, D. Seo, D. N. Park, H. C. Ham, I. H. Oh, S. P. Yoon, J. Han, S. W. Nam, and J. Kim, "Fabrication of Ni-Al-Cr alloy anode for molten carbonate fuel cells", Materials Chemistry and Physics, Vol. 136, No. 2, 2012, pp. 910-916. https://doi.org/10.1016/j.matchemphys.2012.08.018
  5. D. Jung, I. Lee, H. Lim, and D. Lee, "On the high creep resistant morphology and its formation mechanism in Ni-10 wt.% Cr anodes for molten carbonate fuel cells", J. Materials Chemistry, Vol. 13, No. 7, 2003, pp. 1717-1722. https://doi.org/10.1039/B300745F
  6. E. Hwang, J. Park, Y. Kim, S. Kim, and S. Kang, "Effect of alloying elements on the copper-base anode for molten carbonate fuel cells", J. Power Sources, Vol. 69, No. 1, 1997, pp. 55-60. https://doi.org/10.1016/S0378-7753(97)02566-4
  7. A. Kulkarni and S. Giddey, "Materials issues and recent developments in molten carbonate fuel cells", J. Solid State Electrochemistry, Vol. 16, No. 10, 2012, pp. 3123-3146. https://doi.org/10.1007/s10008-012-1771-y
  8. Y. S. Kim, K. Y. Lee, and H. S. Chun, "Creep characteristics of porous Ni/Ni3Al anodes for molten carbonate fuel cells", J. Power Sources, Vol. 99, No. 1, 2001, pp. 26-33. https://doi.org/10.1016/S0378-7753(00)00689-3
  9. K. Hoshino and T. Kohno, "Fabrication of aluminum oxide dispersed Ni--Cu porous sintered alloy by tape casting and sintering consisting of oxidation and reduction processes. II. study of internal oxidation of aluminum and stability at high temperatures", J. the Japan Society of Powder and Powder Metallurgy(Japan), Vol. 40, No. 4, 1993, pp. 421-425. https://doi.org/10.2497/jjspm.40.421
  10. I. H. Oh, S. P. Yoon, T. H. Lim, S. W. Nam, S. A. Hong, and H. C. Lim, "Effect of the structural changes of the Ni-Cr anode on the molten carbonate fuel cell performance", Denki Kagaku, Vol. 64, No. 6, 1996, pp. 497-507.
  11. C. D. Iacovangelo and E. C. Jerabek, "Electrolyte loss and performance decay of molten carbonate fuel cells", J. Electrochem. Soc., Vol. 133, No. 2, 1986, pp. 280-289. https://doi.org/10.1149/1.2108563
  12. H. C. Ham, A. P. Maganyuk, J. Han, S. P. Yoon, S. W. Nam, T. H. Lim, and S. A. Hong, "Preparation of Ni-Al alloys at reduced temperature for fuel cell applications", J. Alloys and Compounds, Vol. 446, 2007, pp. 733-737.
  13. D. Kim, I. Lee, H. Lim, and D. Lee, "Creep behavior of Ni-12 wt.% Al anodes for molten carbonate fuel cells", J. Power Sources, Vol. 109, No. 2, 2002, pp. 347-355. https://doi.org/10.1016/S0378-7753(02)00085-X
  14. D. Lee, I. Lee, and S. Chang, "On the change of a Ni3Al phase in a Ni-12 wt.% Al MCFC anode during partial oxidation and reduction stages of sintering", Electrochimica acta, Vol. 50, No. 2, 2004, pp. 755-759. https://doi.org/10.1016/j.electacta.2004.01.122
  15. S. C. Jang, B. Y. Lee, S. W. Nam, H. C. Ham, J. Han, S. P. Yoon, and S. G. Oh, "New method for low temperature fabrication of Ni-Al alloy powder for molten carbonate fuel cell applications", Int. J. Hydrogen Energy, Vol. 39, No. 23, 2014, pp. 12259-12265. https://doi.org/10.1016/j.ijhydene.2014.01.097
  16. K. Morsi, "Review: reaction synthesis processing of Ni-Al intermetallic materials", Materials Science and Engineering: A, Vol. 299, No. 1, 2001, pp. 1-15. https://doi.org/10.1016/S0921-5093(00)01407-6
  17. N. Voudouris, C. Christoglou, and G. Angelopoulos, "Formation of aluminide coatings on nickel by a fluidised bed CVD process", Surface and Coatings Technology, Vol. 141, No. 2, 2001, pp. 275-282. https://doi.org/10.1016/S0257-8972(01)01193-8
  18. H. Lin, W. Sun, and M. Hon, "Gas phase aluminide coatings on nickel-base superalloy in 713", Thin Solid Films, Vol. 156, No. 2, 1988, pp. 259-264. https://doi.org/10.1016/0040-6090(88)90319-7
  19. Z. Xiang, J. Burnell-Gray, and P. Datta, "Aluminide coating formation on nickel-base superalloys by pack cementation process", J. Materials Science, Vol. 36, No. 23, 2001, pp. 5673-5682. https://doi.org/10.1023/A:1012534220165
  20. C. Houngninou, S. Chevalier, and J. Larpin, "Synthesis and characterisation of pack cemented aluminide coatings on metals", Applied Surface Science, Vol. 236, No. 1, 2004, pp. 256-269. https://doi.org/10.1016/j.apsusc.2004.04.026
  21. J. John, R. Srinivasa, and P. De, "A kinetic model for iron aluminide coatings by low-pressure chemical vapor deposition: Part I. Deposition kinetics", Thin Solid Films, Vol. 466, No. 1, 2004, pp. 339-346. https://doi.org/10.1016/j.tsf.2004.02.042
  22. P. Zhu, J. Li, and C. Liu, "Reaction mechanism of combustion synthesis of NiAl", Materials Science and Engineering: A, Vol. 329, 2002, pp. 57-68.