References
- Y. S. Kim and H. S. Chun, "Sintering characteristics of a porous Ni/Ni3Al anode for molten carbonate fuel cells", J. Power Sources, Vol. 84, No. 1, 1999, pp. 80-86. https://doi.org/10.1016/S0378-7753(99)00306-7
- G. Kim, Y. Moon, and D. Lee, "Preparation of creep-resistant Ni-5 wt.% Al anodes for molten carbonate fuel cells", J. Power Sources, Vol. 104, No. 2, 2002, pp. 181-189. https://doi.org/10.1016/S0378-7753(01)00910-7
- J. H. Wee, "Creep and sintering resistance of a Ce added anode electrode for molten carbonate fuel cell", Materials Chemistry and Physics, Vol. 98, No. 2, 2006, pp. 273-278. https://doi.org/10.1016/j.matchemphys.2005.09.018
- H. V. P. Nguyen, S. A. Song, D. Seo, D. N. Park, H. C. Ham, I. H. Oh, S. P. Yoon, J. Han, S. W. Nam, and J. Kim, "Fabrication of Ni-Al-Cr alloy anode for molten carbonate fuel cells", Materials Chemistry and Physics, Vol. 136, No. 2, 2012, pp. 910-916. https://doi.org/10.1016/j.matchemphys.2012.08.018
- D. Jung, I. Lee, H. Lim, and D. Lee, "On the high creep resistant morphology and its formation mechanism in Ni-10 wt.% Cr anodes for molten carbonate fuel cells", J. Materials Chemistry, Vol. 13, No. 7, 2003, pp. 1717-1722. https://doi.org/10.1039/B300745F
- E. Hwang, J. Park, Y. Kim, S. Kim, and S. Kang, "Effect of alloying elements on the copper-base anode for molten carbonate fuel cells", J. Power Sources, Vol. 69, No. 1, 1997, pp. 55-60. https://doi.org/10.1016/S0378-7753(97)02566-4
- A. Kulkarni and S. Giddey, "Materials issues and recent developments in molten carbonate fuel cells", J. Solid State Electrochemistry, Vol. 16, No. 10, 2012, pp. 3123-3146. https://doi.org/10.1007/s10008-012-1771-y
- Y. S. Kim, K. Y. Lee, and H. S. Chun, "Creep characteristics of porous Ni/Ni3Al anodes for molten carbonate fuel cells", J. Power Sources, Vol. 99, No. 1, 2001, pp. 26-33. https://doi.org/10.1016/S0378-7753(00)00689-3
- K. Hoshino and T. Kohno, "Fabrication of aluminum oxide dispersed Ni--Cu porous sintered alloy by tape casting and sintering consisting of oxidation and reduction processes. II. study of internal oxidation of aluminum and stability at high temperatures", J. the Japan Society of Powder and Powder Metallurgy(Japan), Vol. 40, No. 4, 1993, pp. 421-425. https://doi.org/10.2497/jjspm.40.421
- I. H. Oh, S. P. Yoon, T. H. Lim, S. W. Nam, S. A. Hong, and H. C. Lim, "Effect of the structural changes of the Ni-Cr anode on the molten carbonate fuel cell performance", Denki Kagaku, Vol. 64, No. 6, 1996, pp. 497-507.
- C. D. Iacovangelo and E. C. Jerabek, "Electrolyte loss and performance decay of molten carbonate fuel cells", J. Electrochem. Soc., Vol. 133, No. 2, 1986, pp. 280-289. https://doi.org/10.1149/1.2108563
- H. C. Ham, A. P. Maganyuk, J. Han, S. P. Yoon, S. W. Nam, T. H. Lim, and S. A. Hong, "Preparation of Ni-Al alloys at reduced temperature for fuel cell applications", J. Alloys and Compounds, Vol. 446, 2007, pp. 733-737.
- D. Kim, I. Lee, H. Lim, and D. Lee, "Creep behavior of Ni-12 wt.% Al anodes for molten carbonate fuel cells", J. Power Sources, Vol. 109, No. 2, 2002, pp. 347-355. https://doi.org/10.1016/S0378-7753(02)00085-X
- D. Lee, I. Lee, and S. Chang, "On the change of a Ni3Al phase in a Ni-12 wt.% Al MCFC anode during partial oxidation and reduction stages of sintering", Electrochimica acta, Vol. 50, No. 2, 2004, pp. 755-759. https://doi.org/10.1016/j.electacta.2004.01.122
- S. C. Jang, B. Y. Lee, S. W. Nam, H. C. Ham, J. Han, S. P. Yoon, and S. G. Oh, "New method for low temperature fabrication of Ni-Al alloy powder for molten carbonate fuel cell applications", Int. J. Hydrogen Energy, Vol. 39, No. 23, 2014, pp. 12259-12265. https://doi.org/10.1016/j.ijhydene.2014.01.097
- K. Morsi, "Review: reaction synthesis processing of Ni-Al intermetallic materials", Materials Science and Engineering: A, Vol. 299, No. 1, 2001, pp. 1-15. https://doi.org/10.1016/S0921-5093(00)01407-6
- N. Voudouris, C. Christoglou, and G. Angelopoulos, "Formation of aluminide coatings on nickel by a fluidised bed CVD process", Surface and Coatings Technology, Vol. 141, No. 2, 2001, pp. 275-282. https://doi.org/10.1016/S0257-8972(01)01193-8
- H. Lin, W. Sun, and M. Hon, "Gas phase aluminide coatings on nickel-base superalloy in 713", Thin Solid Films, Vol. 156, No. 2, 1988, pp. 259-264. https://doi.org/10.1016/0040-6090(88)90319-7
- Z. Xiang, J. Burnell-Gray, and P. Datta, "Aluminide coating formation on nickel-base superalloys by pack cementation process", J. Materials Science, Vol. 36, No. 23, 2001, pp. 5673-5682. https://doi.org/10.1023/A:1012534220165
- C. Houngninou, S. Chevalier, and J. Larpin, "Synthesis and characterisation of pack cemented aluminide coatings on metals", Applied Surface Science, Vol. 236, No. 1, 2004, pp. 256-269. https://doi.org/10.1016/j.apsusc.2004.04.026
- J. John, R. Srinivasa, and P. De, "A kinetic model for iron aluminide coatings by low-pressure chemical vapor deposition: Part I. Deposition kinetics", Thin Solid Films, Vol. 466, No. 1, 2004, pp. 339-346. https://doi.org/10.1016/j.tsf.2004.02.042
- P. Zhu, J. Li, and C. Liu, "Reaction mechanism of combustion synthesis of NiAl", Materials Science and Engineering: A, Vol. 329, 2002, pp. 57-68.