DOI QR코드

DOI QR Code

무회분탄에 분산된 니켈 촉매의 톨루엔 수증기 개질

Nickel Catalysts Supported on Ash-Free Coal for Steam Reforming of Toluene

  • ;
  • 김수현 (한국에너지기술연구원 청정연료연구실) ;
  • 유지호 (한국에너지기술연구원 청정연료연구실) ;
  • 최호경 (한국에너지기술연구원 청정연료연구실) ;
  • 임영준 (한국에너지기술연구원 청정연료연구실) ;
  • 임정환 (한국에너지기술연구원 청정연료연구실) ;
  • 김상도 (한국에너지기술연구원 청정연료연구실) ;
  • 전동혁 (한국에너지기술연구원 청정연료연구실) ;
  • 이시훈 (한국에너지기술연구원 청정연료연구실)
  • PRISCILLA, LIA (Clean Fuel Laboratory, Korea Institute of Energy Research) ;
  • KIM, SOOHYUN (Clean Fuel Laboratory, Korea Institute of Energy Research) ;
  • YOO, JIHO (Clean Fuel Laboratory, Korea Institute of Energy Research) ;
  • CHOI, HOKYUNG (Clean Fuel Laboratory, Korea Institute of Energy Research) ;
  • RHIM, YOUNGJOON (Clean Fuel Laboratory, Korea Institute of Energy Research) ;
  • LIM, JEONGHWAN (Clean Fuel Laboratory, Korea Institute of Energy Research) ;
  • KIM, SANGDO (Clean Fuel Laboratory, Korea Institute of Energy Research) ;
  • CHUN, DONGHYUK (Clean Fuel Laboratory, Korea Institute of Energy Research) ;
  • LEE, SIHYUN (Clean Fuel Laboratory, Korea Institute of Energy Research)
  • 투고 : 2018.08.31
  • 심사 : 2018.12.30
  • 발행 : 2018.12.30

초록

Catalytic supports made of carbon have many advantages, such as high coking resistance, tailorable pore and surface structures, and ease of recycling of waste catalysts. Moreover, they do not require pre-reduction. In this study, ash-free coal (AFC) was obtained by the thermal extraction of carbonaceous components from raw coal and its performance as a carbon catalytic support was compared with that of well-known activated carbon (AC). Nickel was dispersed on the carbon supports and the resulting catalysts were applied to the steam reforming of toluene (SRT), a model compound of biomass tar. Interestingly, nickel catalysts dispersed on AFC, which has a very small surface area (${\sim}0.13m^2/g$), showed higher activity than those dispersed on AC, which has a large surface area ($1,173A/cm^2$). X-ray diffraction (XRD) analysis showed that the particle size of nickel deposited on AFC was smaller than that deposited on AC, with the average values on AFC ${\approx}11nm$ and on AC ${\approx}23nm$. This proved that heteroatomic functional groups in AFC, such as carboxyls, can provide ion-exchange or adsorption sites for the nano-scale dispersion of nickel. In addition, the pore structure, surface morphology, chemical composition, and chemical state of the prepared catalysts were analyzed using Brunauer-Emmett-Taylor (BET) analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), x-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, and temperature-programmed reduction (TPR).

키워드

SSONB2_2018_v29n6_559_f0001.png 이미지

Fig. 1. N2 adsorption-desorption isotherms of AC

SSONB2_2018_v29n6_559_f0002.png 이미지

Fig. 2. (a) TEM image of 24.4 Ni/AFC-Imp and (b) SEM image of 24.4 Ni/AFC-Imp

SSONB2_2018_v29n6_559_f0003.png 이미지

Fig. 4. Catalytic activity of nickel supported on AFC for SRT

SSONB2_2018_v29n6_559_f0004.png 이미지

Fig. 5. Catalytic activity of nickel supported on AC for SRT

SSONB2_2018_v29n6_559_f0005.png 이미지

Fig. 7. FT-IR spectra of (a) AFC and 24.4 Ni/AFC-Imp, and (b) AC and 14.9 Ni/AC-IWI

SSONB2_2018_v29n6_559_f0006.png 이미지

Fig. 3. (a) TEM image of 14.9 Ni/AC-IWI and (b) SEM image of 14.9 Ni/AC-IWI

SSONB2_2018_v29n6_559_f0007.png 이미지

Fig. 6. XRD patterns of 24.4 Ni/AFC-Imp and 14.9 Ni/AC-IWI

SSONB2_2018_v29n6_559_f0008.png 이미지

Fig. 8. H2-TPR profiles of 24.4 Ni/AFC-Imp and 14.9 Ni/AC-IWI catalyst

Table 1. Proximate/ultimate analysis of AFC and AC

SSONB2_2018_v29n6_559_t0001.png 이미지

Table 2. Features of the synthesized catalyst samples

SSONB2_2018_v29n6_559_t0002.png 이미지

Table 3. Pore characteristics of AFC and AC

SSONB2_2018_v29n6_559_t0003.png 이미지

참고문헌

  1. H. H. Schobert, "Lignites of North America", Elsevier, The Netherlands, 1995.
  2. J. Yu, J. A. Lucas, and T. F. Wall, "Formation of the structure of chars during devolatilization of pulverized coal and its thermoproperties: A review", Prog. Energy Combustion Sci., Vol. 33, 2007, pp. 135-170. https://doi.org/10.1016/j.pecs.2006.07.003
  3. A. Ahmadpour and D. D. Do, "The preparation of active carbons from coal by chemical and physical activation", Carbon, Vol. 34, 1996, pp. 471-479. https://doi.org/10.1016/0008-6223(95)00204-9
  4. C. Z. Li, "Some recent advances in the understanding of the pyrolysis and gasification behavior of Victorian brown coal", Fuel, Vol. 86, 2007, pp. 1664-1683. https://doi.org/10.1016/j.fuel.2007.01.008
  5. M. Arif, F. Jones, A. Barifcani, and S. Iglauer, "Influence of surface chemistry on interfacial properties of low to high rank coal seams", Fuel, Vol. 194, 2017, pp. 211-221. https://doi.org/10.1016/j.fuel.2017.01.027
  6. F. Rodriguez-Reinoso, "The role of carbon materials in heterogeneous catalysis", Carbon, Vol. 36, 1998, pp. 159-175. https://doi.org/10.1016/S0008-6223(97)00173-5
  7. S. Kim, D. Chun, Y. Rhim, J. Lim, S. Kim, H. Choi, S. Lee, and J. Yoo, "Catalytic reforming of toluene using a nickel ion-exchanged coal catalyst", Int. J. Hydrogen Energy, Vol. 40, 2015, pp. 11855-11862. https://doi.org/10.1016/j.ijhydene.2015.06.103
  8. P. Serp and J. L. Figuiredo, "Carbon Materials for Catalysis", John Wiley & Sons, Inc., USA, 2009.
  9. S. Samih and J. Chaouki, "Catalytic ash free coal gasification in a fluidized bed thermogravimetric analyzer", Powder Technol., Vol. 316, 2017, pp. 551-559. https://doi.org/10.1016/j.powtec.2017.02.051
  10. T. Yoshida, T. Takanohashi, K. Sakanishi, I. Saito, M. Fujita, and K. Mashimo, "The effect of extraction condition on 'HyperCoal' production (1) - Under room-temperature filtration", Fuel, Vol. 81, 2002, pp. 1463-1469. https://doi.org/10.1016/S0016-2361(02)00068-6
  11. T. Yoshida, C. Li, T. Takanohashi, A. Matsumura, S. Sato, and I. Saito, "Effect of extraction condition on 'HyperCoal' production (2) - Effect of polar solvents under hot filtration", Fuel Process. Technol., Vol. 86, 2004, pp. 61-72. https://doi.org/10.1016/j.fuproc.2003.12.003
  12. H. Juntgen, "Activated carbon as catalyst support", Fuel, Vol. 65, 1986, pp. 1436-1446. https://doi.org/10.1016/0016-2361(86)90120-1
  13. W. Mohd and A. Wan, "Textural characteristics, surface chemistry and oxidation of activated carbon", J. Nat. Gas Chem., Vol. 19, 2010, pp. 267-279. https://doi.org/10.1016/S1003-9953(09)60066-9
  14. R. Saidur, E. A. Abdelaziz, A. Demirbas, M. S. Hossain, and S. Mekhilef, "A review on biomass as a fuel for boilers", Renewable Sustainable Energy Reviews, Vol. 15, 2011, pp. 2262-2289. https://doi.org/10.1016/j.rser.2011.02.015
  15. J. A. Ruiz, M. C. Juarez, M. P. Morales, P. Munoz, and M. A. Mendivil, "Biomass gasification for electricity generation: Review of current technology barriers", Renewable Sustainable Energy Reviews, Vol. 18, 2013, pp. 174-183. https://doi.org/10.1016/j.rser.2012.10.021
  16. J. Rizkiana, G. Guan, W. B. Widayatno, X. Hao, W. Huang, A. Tsutsumi, and A. Abudula, "Effect of biomass type on the performance of cogasification of low rank coal with biomass at relatively low temperatures", Fuel, Vol. 134, 2014, pp. 414-419. https://doi.org/10.1016/j.fuel.2014.06.008
  17. Y. Shen and K. Yoshikawa, "Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis - A review", Renewable Sustainable Energy Reviews, Vol. 21, 2013, pp. 371-392. https://doi.org/10.1016/j.rser.2012.12.062
  18. X. Liu, X. Yang, C. Liu, P. Chen, X. Yue, and S. Zhang, "Low-temperature catalytic steam reforming of toluene over activated carbon supported nickel catalysts", J. Taiwan Inst. Chem. Eng., Vol. 65, 2016, pp. 233-241. https://doi.org/10.1016/j.jtice.2016.05.006
  19. J. A. Rached, C. E. Hayek, E. Dahdah, C. Gennequin, S. Aouad, H. L. Tidahy, J. Estephane, B. Nsouli, A. Aboukaïs, and E. Abi-Aad, "Ni based catalysts promoted with cerium used in the steam reforming of toluene for hydrogen production", Int. J. Hydrogen Energy, Vol. 42, 2017, pp. 1289-12840.
  20. S. A. Benson and E. A. Sondreal, "Ash-related issues during combustion and gasification, in impact of mineral impurities in solid fuel combustion", Springer, USA, 1999, pp. 1-21.
  21. H. D. Setiabudi, C. C. Chong, S. M. Abed, L. P. Teh, and S. Y. Chin, "Comparative study of Ni-Ce loading method: Beneficial effect of ultrasonic-assisted impregnation method in $CO_2$ reforming of $CH_4$ over Ni-Ce/SBA-15", J. Environ. Chem. Eng., Vol. 6, 2018, pp. 745-753. https://doi.org/10.1016/j.jece.2018.01.001
  22. E. Rio, D. Gaona, J. C. Hernandez-Garrido, J. J. Calvino, M. G. Basallote, M. J. Fernandez-Trujillo, J. A. Perez-Omil, and J. M. Gatica, "Speciation-controlled incipient wetness impregnation : A rational synthetic approach to prepare sub-nanosized and highly active ceria-zirconia supported gold catalysts", J. Catal., Vol. 318, 2014, pp. 119-127. https://doi.org/10.1016/j.jcat.2014.07.001
  23. I. Lee, S. Jin, D. Chun, H, Choi, S. Lee, K. Lee, and J. Yoo, "Ash-free coal as fuel for direct carbon fuel cell", Sci. China Chem., Vol. 57, 2014, pp. 1010-1018. https://doi.org/10.1007/s11426-014-5105-z
  24. M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, and K. S. W. Sing, "Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)", Pure Appl. Chem., Vol. 87, 2015, pp. 1051-10691. https://doi.org/10.1515/pac-2014-1117
  25. T. Takanohashi, T. Shishido, H. Kawashima, and I. Saito, "Characterisation of HyperCoals from coals of various ranks", Fuel, Vol. 87, 2008, pp. 592-598. https://doi.org/10.1016/j.fuel.2007.02.017
  26. N. Ruhswurmova, S. Kim, J. Yoo, D. Chun, Y. Rhim, J. Lim, S. Kim, H. Choi, and S. Lee, "Nickel supported on low rank coal for steam reforming of ethyl acetate", Int. J. Hydrogen Energy, Vol. 43, 2018, pp. 15880-15890. https://doi.org/10.1016/j.ijhydene.2018.06.104
  27. R. A. Ortega-dominguez, H. Vargas-Villagran, C. Penaloza-Orta, K. Saavedra-Rubio, X. Bokhimi, and T. E. Klimova, "A facile method to increase metal dispersion and hydrogenation activity of Ni/SBA-15 catalysts", Fuel, Vol. 198, 2017, pp. 110-122. https://doi.org/10.1016/j.fuel.2016.12.037
  28. E. Marceau, M. Che, J. Cejka, and A. Zukal, "Nickel (II) nitrate vs. acetate: Influence of the precursor on the structure and reducibility of Ni/MCM-41 and Ni/Al-MCM-41 catalysts", ChemCatChem, Vol. 2, 2010, pp. 413-422. https://doi.org/10.1002/cctc.200900289
  29. S. Murov, "Properties of organic solvents", Miller's Home, https://sites.google.com/site /miller00828/in/solvent-polarity-table, 1998.
  30. D. Wierzbicki, R. Baran, R. Debek, M. Motak, T. Grzybek, M. E. Galvez, and P. Da, "The influence of nickel content on the performance of hydrotalcite-derived catalysts in $CO_2$ methanation reaction", Int. J. Hydrogen Energy, Vol. 42, 2017, pp. 23548-23555. https://doi.org/10.1016/j.ijhydene.2017.02.148
  31. T. Van Haasterecht, M. Swart, K. P. De Jong, and J. H. Bitter, "Effect of initial nickel particle size on stability of nickel catalysts for aqueous phase reforming", J. Energy Chem., Vol. 25, 2016, pp. 289-296. https://doi.org/10.1016/j.jechem.2016.01.006
  32. M. Wu, F. Chen, Y. Lai, and Y. Sie, "Electrocatalytic oxidation of urea in alkaline solution using nickel/nickel oxide nanoparticles derived from nickel-organic framework", Electrochim. Acta, Vol. 258, 2017, pp. 167-174. https://doi.org/10.1016/j.electacta.2017.10.113
  33. M. Hu, M. Laghari, B. Cui, B. Xiao, B. Zhang, and D. Guo, "Catalytic cracking of biomass tar over char supported nickel catalyst", Energy, Vol. 145, 2018, pp. 228-237. https://doi.org/10.1016/j.energy.2017.12.096
  34. H. Takagi, K. Maruyama, N. Yoshizawa, Y. Yamada, and Y. Sato, "XRD analysis of carbon stacking structure in coal during heat treatment", Fuel, Vol. 83, 2004, pp. 2427-2433. https://doi.org/10.1016/j.fuel.2004.06.019
  35. E. Auer, A. Freund, J. Pietsch, and T. Tacke, "Carbons as supports for industrial precious metal catalysts", Appl. Catal. A: General, Vol. 173, 1998, pp. 259-271. https://doi.org/10.1016/S0926-860X(98)00184-7
  36. S. A. Speakman, "Estimating crystallite size using XRD", MIT, Center for Materials Science and Engineering, USA, 2012.
  37. B. L. Dutrow and C. M. Clark, "X-ray Powder Diffraction (XRD)", Carleton College, USA, 2008.
  38. J. A. Newman, P. D. Schmitt, S. J. Toth, F. Deng, S. Zhang, and G. J. Simpson, "Parts per million powder X-ray diffraction", Anal. Chem., Vol. 87, 2015, pp. 10950-10955. https://doi.org/10.1021/acs.analchem.5b02758
  39. H. Xueqiu, L. Xianfeng, N. Baisheng, and S. Dazhao, "FTIR and Raman spectroscopy characterization of functional groups in various rank coals", Fuel, Vol. 206, 2017, pp. 555-563.
  40. K. Wang, F. Du, and G. Wang, "The influence of methane and $CO_2$ adsorption on the functional groups of coals: Insights from a Fourier transform infrared investigation", J. Nat. Gas Sci. Eng., Vol. 45, 2017, pp. 358-367. https://doi.org/10.1016/j.jngse.2017.06.003
  41. W. Geng, T. Nakajima, H. Takanashi, and A. Ohki, "Analysis of carboxyl group in coal and coal aromaticity by Fourier transform infrared (FT-IR) spectrometry", Fuel, Vol. 88, 2009, pp. 139-144. https://doi.org/10.1016/j.fuel.2008.07.027
  42. B. Tian, Y. Qiao, Y. Tian, K. Xie, Q. Liu, and H. Zhou, "FTIR study on structural changes of different-rank coals caused by single/multiple extraction with cyclohexanone and NMP/$CS_2$ mixed solvent", Fuel Process. Technol., Vol. 154, 2016, pp. 210-218. https://doi.org/10.1016/j.fuproc.2016.08.035
  43. M. Karnib, A. Kabbani, H. Holail, and Z. Olama, "Heavy metals removal using activated carbon, silica and silica activated carbon composite", Energy Procedia, Vol. 50, 2014, pp. 113-120. https://doi.org/10.1016/j.egypro.2014.06.014
  44. J. C. Moreno-Pirajan and L. Giraldo, "Heavy metal ions adsorption from wastewater using activated carbon from orange peel", E-Journal Chem., Vol. 9, 2012, pp. 926-937. https://doi.org/10.1155/2012/383742
  45. G. S. Miguel, S. D. Lambert, and N. J. D. Graham, "Thermal regeneration of granular activated using inert atmospheric conditions", Environ. Technol., Vol. 23, 2002, pp. 1337-1346. https://doi.org/10.1080/09593332508618449
  46. B. Ledesma, S. Roman, A. alvarez-murillo, E. Sabio, and J. F. Gonzalez, "Cyclic adsorption/thermal regeneration of activated carbons", J. Anal. Appl. Pyrolysis, Vol. 106, 2014, pp. 112-117. https://doi.org/10.1016/j.jaap.2014.01.007
  47. S. He, Z. Mei, N. Liu, and L. Zhang, "Ni/SBA-15 catalysts for hydrogen production by ethanol steam reforming : Effect of nickel precursor", Int. J. Hydrogen Energy, Vol. 42, 2017, pp. 14429-14438. https://doi.org/10.1016/j.ijhydene.2017.02.115
  48. R. da P. Fiuza, M. A. de Silva, and J. S. Boaventura, "Development of Fe-Ni/YSZ-GDC electrocatalysts for application as SOFC anodes: XRD and TPR characterization and evaluation in the ethanol steam reforming reaction", Int. J. Hydrogen Energy, Vol. 35, 2010, pp. 11216-11228. https://doi.org/10.1016/j.ijhydene.2010.07.026
  49. S. Yeqin, Z. Ying, L. Hanfeng, Z. Zekai, and C. Yinfei, "Soot combustion performance and $H_2$‐TPR study on ceria‐based mixed oxides", Chinese J. Catal., Vol. 34, 2013, pp. 567-577. https://doi.org/10.1016/S1872-2067(11)60495-6
  50. S. D. Robertson, B. D. McNicol, H. H. De Baas, S. C. Kloet, and J. W. Jenkins, "Determination of reducibility and identification of alloying in copper-nickel-on-silica catalysts by temperature-programmed reduction", J. Catal., Vol. 37, 1975, pp. 424-431. https://doi.org/10.1016/0021-9517(75)90179-7
  51. B. F. Machado and P. Serp, "Graphene-based materials for catalysis", Catal. Sci. Technol., Vol. 2, 2012, pp. 54-75. https://doi.org/10.1039/C1CY00361E
  52. J. Chen and S. Wu, "Acid/base-treated activated carbons: characterization of functional groups and metal adsorptive properties", Langmuir, Vol. 20, 2004, pp. 2233-2242. https://doi.org/10.1021/la0348463
  53. Z. Li, G. Zhou, C. Li, and T. Cheng, "Effect of Pr on copper-based catalysts for ethane oxychlorination", Catal. Commun., Vol. 40, 2013, pp. 42-46. https://doi.org/10.1016/j.catcom.2013.05.020
  54. M. Luo, P. Fang, M. He, and Y. Xie, "In situ XRD, Raman, and TPR studies of CuO/$Al_2O_3$ catalysts for CO oxidation", J. Mol. Catal. A Chem., Vol. 239, 2005, pp. 243-248. https://doi.org/10.1016/j.molcata.2005.06.029