Fig. 1. N2 adsorption-desorption isotherms of AC
Fig. 2. (a) TEM image of 24.4 Ni/AFC-Imp and (b) SEM image of 24.4 Ni/AFC-Imp
Fig. 4. Catalytic activity of nickel supported on AFC for SRT
Fig. 5. Catalytic activity of nickel supported on AC for SRT
Fig. 7. FT-IR spectra of (a) AFC and 24.4 Ni/AFC-Imp, and (b) AC and 14.9 Ni/AC-IWI
Fig. 3. (a) TEM image of 14.9 Ni/AC-IWI and (b) SEM image of 14.9 Ni/AC-IWI
Fig. 6. XRD patterns of 24.4 Ni/AFC-Imp and 14.9 Ni/AC-IWI
Fig. 8. H2-TPR profiles of 24.4 Ni/AFC-Imp and 14.9 Ni/AC-IWI catalyst
Table 1. Proximate/ultimate analysis of AFC and AC
Table 2. Features of the synthesized catalyst samples
Table 3. Pore characteristics of AFC and AC
참고문헌
- H. H. Schobert, "Lignites of North America", Elsevier, The Netherlands, 1995.
- J. Yu, J. A. Lucas, and T. F. Wall, "Formation of the structure of chars during devolatilization of pulverized coal and its thermoproperties: A review", Prog. Energy Combustion Sci., Vol. 33, 2007, pp. 135-170. https://doi.org/10.1016/j.pecs.2006.07.003
- A. Ahmadpour and D. D. Do, "The preparation of active carbons from coal by chemical and physical activation", Carbon, Vol. 34, 1996, pp. 471-479. https://doi.org/10.1016/0008-6223(95)00204-9
- C. Z. Li, "Some recent advances in the understanding of the pyrolysis and gasification behavior of Victorian brown coal", Fuel, Vol. 86, 2007, pp. 1664-1683. https://doi.org/10.1016/j.fuel.2007.01.008
- M. Arif, F. Jones, A. Barifcani, and S. Iglauer, "Influence of surface chemistry on interfacial properties of low to high rank coal seams", Fuel, Vol. 194, 2017, pp. 211-221. https://doi.org/10.1016/j.fuel.2017.01.027
- F. Rodriguez-Reinoso, "The role of carbon materials in heterogeneous catalysis", Carbon, Vol. 36, 1998, pp. 159-175. https://doi.org/10.1016/S0008-6223(97)00173-5
- S. Kim, D. Chun, Y. Rhim, J. Lim, S. Kim, H. Choi, S. Lee, and J. Yoo, "Catalytic reforming of toluene using a nickel ion-exchanged coal catalyst", Int. J. Hydrogen Energy, Vol. 40, 2015, pp. 11855-11862. https://doi.org/10.1016/j.ijhydene.2015.06.103
- P. Serp and J. L. Figuiredo, "Carbon Materials for Catalysis", John Wiley & Sons, Inc., USA, 2009.
- S. Samih and J. Chaouki, "Catalytic ash free coal gasification in a fluidized bed thermogravimetric analyzer", Powder Technol., Vol. 316, 2017, pp. 551-559. https://doi.org/10.1016/j.powtec.2017.02.051
- T. Yoshida, T. Takanohashi, K. Sakanishi, I. Saito, M. Fujita, and K. Mashimo, "The effect of extraction condition on 'HyperCoal' production (1) - Under room-temperature filtration", Fuel, Vol. 81, 2002, pp. 1463-1469. https://doi.org/10.1016/S0016-2361(02)00068-6
- T. Yoshida, C. Li, T. Takanohashi, A. Matsumura, S. Sato, and I. Saito, "Effect of extraction condition on 'HyperCoal' production (2) - Effect of polar solvents under hot filtration", Fuel Process. Technol., Vol. 86, 2004, pp. 61-72. https://doi.org/10.1016/j.fuproc.2003.12.003
- H. Juntgen, "Activated carbon as catalyst support", Fuel, Vol. 65, 1986, pp. 1436-1446. https://doi.org/10.1016/0016-2361(86)90120-1
- W. Mohd and A. Wan, "Textural characteristics, surface chemistry and oxidation of activated carbon", J. Nat. Gas Chem., Vol. 19, 2010, pp. 267-279. https://doi.org/10.1016/S1003-9953(09)60066-9
- R. Saidur, E. A. Abdelaziz, A. Demirbas, M. S. Hossain, and S. Mekhilef, "A review on biomass as a fuel for boilers", Renewable Sustainable Energy Reviews, Vol. 15, 2011, pp. 2262-2289. https://doi.org/10.1016/j.rser.2011.02.015
- J. A. Ruiz, M. C. Juarez, M. P. Morales, P. Munoz, and M. A. Mendivil, "Biomass gasification for electricity generation: Review of current technology barriers", Renewable Sustainable Energy Reviews, Vol. 18, 2013, pp. 174-183. https://doi.org/10.1016/j.rser.2012.10.021
- J. Rizkiana, G. Guan, W. B. Widayatno, X. Hao, W. Huang, A. Tsutsumi, and A. Abudula, "Effect of biomass type on the performance of cogasification of low rank coal with biomass at relatively low temperatures", Fuel, Vol. 134, 2014, pp. 414-419. https://doi.org/10.1016/j.fuel.2014.06.008
- Y. Shen and K. Yoshikawa, "Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis - A review", Renewable Sustainable Energy Reviews, Vol. 21, 2013, pp. 371-392. https://doi.org/10.1016/j.rser.2012.12.062
- X. Liu, X. Yang, C. Liu, P. Chen, X. Yue, and S. Zhang, "Low-temperature catalytic steam reforming of toluene over activated carbon supported nickel catalysts", J. Taiwan Inst. Chem. Eng., Vol. 65, 2016, pp. 233-241. https://doi.org/10.1016/j.jtice.2016.05.006
- J. A. Rached, C. E. Hayek, E. Dahdah, C. Gennequin, S. Aouad, H. L. Tidahy, J. Estephane, B. Nsouli, A. Aboukaïs, and E. Abi-Aad, "Ni based catalysts promoted with cerium used in the steam reforming of toluene for hydrogen production", Int. J. Hydrogen Energy, Vol. 42, 2017, pp. 1289-12840.
- S. A. Benson and E. A. Sondreal, "Ash-related issues during combustion and gasification, in impact of mineral impurities in solid fuel combustion", Springer, USA, 1999, pp. 1-21.
-
H. D. Setiabudi, C. C. Chong, S. M. Abed, L. P. Teh, and S. Y. Chin, "Comparative study of Ni-Ce loading method: Beneficial effect of ultrasonic-assisted impregnation method in
$CO_2$ reforming of$CH_4$ over Ni-Ce/SBA-15", J. Environ. Chem. Eng., Vol. 6, 2018, pp. 745-753. https://doi.org/10.1016/j.jece.2018.01.001 - E. Rio, D. Gaona, J. C. Hernandez-Garrido, J. J. Calvino, M. G. Basallote, M. J. Fernandez-Trujillo, J. A. Perez-Omil, and J. M. Gatica, "Speciation-controlled incipient wetness impregnation : A rational synthetic approach to prepare sub-nanosized and highly active ceria-zirconia supported gold catalysts", J. Catal., Vol. 318, 2014, pp. 119-127. https://doi.org/10.1016/j.jcat.2014.07.001
- I. Lee, S. Jin, D. Chun, H, Choi, S. Lee, K. Lee, and J. Yoo, "Ash-free coal as fuel for direct carbon fuel cell", Sci. China Chem., Vol. 57, 2014, pp. 1010-1018. https://doi.org/10.1007/s11426-014-5105-z
- M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, and K. S. W. Sing, "Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)", Pure Appl. Chem., Vol. 87, 2015, pp. 1051-10691. https://doi.org/10.1515/pac-2014-1117
- T. Takanohashi, T. Shishido, H. Kawashima, and I. Saito, "Characterisation of HyperCoals from coals of various ranks", Fuel, Vol. 87, 2008, pp. 592-598. https://doi.org/10.1016/j.fuel.2007.02.017
- N. Ruhswurmova, S. Kim, J. Yoo, D. Chun, Y. Rhim, J. Lim, S. Kim, H. Choi, and S. Lee, "Nickel supported on low rank coal for steam reforming of ethyl acetate", Int. J. Hydrogen Energy, Vol. 43, 2018, pp. 15880-15890. https://doi.org/10.1016/j.ijhydene.2018.06.104
- R. A. Ortega-dominguez, H. Vargas-Villagran, C. Penaloza-Orta, K. Saavedra-Rubio, X. Bokhimi, and T. E. Klimova, "A facile method to increase metal dispersion and hydrogenation activity of Ni/SBA-15 catalysts", Fuel, Vol. 198, 2017, pp. 110-122. https://doi.org/10.1016/j.fuel.2016.12.037
- E. Marceau, M. Che, J. Cejka, and A. Zukal, "Nickel (II) nitrate vs. acetate: Influence of the precursor on the structure and reducibility of Ni/MCM-41 and Ni/Al-MCM-41 catalysts", ChemCatChem, Vol. 2, 2010, pp. 413-422. https://doi.org/10.1002/cctc.200900289
- S. Murov, "Properties of organic solvents", Miller's Home, https://sites.google.com/site /miller00828/in/solvent-polarity-table, 1998.
-
D. Wierzbicki, R. Baran, R. Debek, M. Motak, T. Grzybek, M. E. Galvez, and P. Da, "The influence of nickel content on the performance of hydrotalcite-derived catalysts in
$CO_2$ methanation reaction", Int. J. Hydrogen Energy, Vol. 42, 2017, pp. 23548-23555. https://doi.org/10.1016/j.ijhydene.2017.02.148 - T. Van Haasterecht, M. Swart, K. P. De Jong, and J. H. Bitter, "Effect of initial nickel particle size on stability of nickel catalysts for aqueous phase reforming", J. Energy Chem., Vol. 25, 2016, pp. 289-296. https://doi.org/10.1016/j.jechem.2016.01.006
- M. Wu, F. Chen, Y. Lai, and Y. Sie, "Electrocatalytic oxidation of urea in alkaline solution using nickel/nickel oxide nanoparticles derived from nickel-organic framework", Electrochim. Acta, Vol. 258, 2017, pp. 167-174. https://doi.org/10.1016/j.electacta.2017.10.113
- M. Hu, M. Laghari, B. Cui, B. Xiao, B. Zhang, and D. Guo, "Catalytic cracking of biomass tar over char supported nickel catalyst", Energy, Vol. 145, 2018, pp. 228-237. https://doi.org/10.1016/j.energy.2017.12.096
- H. Takagi, K. Maruyama, N. Yoshizawa, Y. Yamada, and Y. Sato, "XRD analysis of carbon stacking structure in coal during heat treatment", Fuel, Vol. 83, 2004, pp. 2427-2433. https://doi.org/10.1016/j.fuel.2004.06.019
- E. Auer, A. Freund, J. Pietsch, and T. Tacke, "Carbons as supports for industrial precious metal catalysts", Appl. Catal. A: General, Vol. 173, 1998, pp. 259-271. https://doi.org/10.1016/S0926-860X(98)00184-7
- S. A. Speakman, "Estimating crystallite size using XRD", MIT, Center for Materials Science and Engineering, USA, 2012.
- B. L. Dutrow and C. M. Clark, "X-ray Powder Diffraction (XRD)", Carleton College, USA, 2008.
- J. A. Newman, P. D. Schmitt, S. J. Toth, F. Deng, S. Zhang, and G. J. Simpson, "Parts per million powder X-ray diffraction", Anal. Chem., Vol. 87, 2015, pp. 10950-10955. https://doi.org/10.1021/acs.analchem.5b02758
- H. Xueqiu, L. Xianfeng, N. Baisheng, and S. Dazhao, "FTIR and Raman spectroscopy characterization of functional groups in various rank coals", Fuel, Vol. 206, 2017, pp. 555-563.
-
K. Wang, F. Du, and G. Wang, "The influence of methane and
$CO_2$ adsorption on the functional groups of coals: Insights from a Fourier transform infrared investigation", J. Nat. Gas Sci. Eng., Vol. 45, 2017, pp. 358-367. https://doi.org/10.1016/j.jngse.2017.06.003 - W. Geng, T. Nakajima, H. Takanashi, and A. Ohki, "Analysis of carboxyl group in coal and coal aromaticity by Fourier transform infrared (FT-IR) spectrometry", Fuel, Vol. 88, 2009, pp. 139-144. https://doi.org/10.1016/j.fuel.2008.07.027
-
B. Tian, Y. Qiao, Y. Tian, K. Xie, Q. Liu, and H. Zhou, "FTIR study on structural changes of different-rank coals caused by single/multiple extraction with cyclohexanone and NMP/
$CS_2$ mixed solvent", Fuel Process. Technol., Vol. 154, 2016, pp. 210-218. https://doi.org/10.1016/j.fuproc.2016.08.035 - M. Karnib, A. Kabbani, H. Holail, and Z. Olama, "Heavy metals removal using activated carbon, silica and silica activated carbon composite", Energy Procedia, Vol. 50, 2014, pp. 113-120. https://doi.org/10.1016/j.egypro.2014.06.014
- J. C. Moreno-Pirajan and L. Giraldo, "Heavy metal ions adsorption from wastewater using activated carbon from orange peel", E-Journal Chem., Vol. 9, 2012, pp. 926-937. https://doi.org/10.1155/2012/383742
- G. S. Miguel, S. D. Lambert, and N. J. D. Graham, "Thermal regeneration of granular activated using inert atmospheric conditions", Environ. Technol., Vol. 23, 2002, pp. 1337-1346. https://doi.org/10.1080/09593332508618449
- B. Ledesma, S. Roman, A. alvarez-murillo, E. Sabio, and J. F. Gonzalez, "Cyclic adsorption/thermal regeneration of activated carbons", J. Anal. Appl. Pyrolysis, Vol. 106, 2014, pp. 112-117. https://doi.org/10.1016/j.jaap.2014.01.007
- S. He, Z. Mei, N. Liu, and L. Zhang, "Ni/SBA-15 catalysts for hydrogen production by ethanol steam reforming : Effect of nickel precursor", Int. J. Hydrogen Energy, Vol. 42, 2017, pp. 14429-14438. https://doi.org/10.1016/j.ijhydene.2017.02.115
- R. da P. Fiuza, M. A. de Silva, and J. S. Boaventura, "Development of Fe-Ni/YSZ-GDC electrocatalysts for application as SOFC anodes: XRD and TPR characterization and evaluation in the ethanol steam reforming reaction", Int. J. Hydrogen Energy, Vol. 35, 2010, pp. 11216-11228. https://doi.org/10.1016/j.ijhydene.2010.07.026
-
S. Yeqin, Z. Ying, L. Hanfeng, Z. Zekai, and C. Yinfei, "Soot combustion performance and
$H_2$ ‐TPR study on ceria‐based mixed oxides", Chinese J. Catal., Vol. 34, 2013, pp. 567-577. https://doi.org/10.1016/S1872-2067(11)60495-6 - S. D. Robertson, B. D. McNicol, H. H. De Baas, S. C. Kloet, and J. W. Jenkins, "Determination of reducibility and identification of alloying in copper-nickel-on-silica catalysts by temperature-programmed reduction", J. Catal., Vol. 37, 1975, pp. 424-431. https://doi.org/10.1016/0021-9517(75)90179-7
- B. F. Machado and P. Serp, "Graphene-based materials for catalysis", Catal. Sci. Technol., Vol. 2, 2012, pp. 54-75. https://doi.org/10.1039/C1CY00361E
- J. Chen and S. Wu, "Acid/base-treated activated carbons: characterization of functional groups and metal adsorptive properties", Langmuir, Vol. 20, 2004, pp. 2233-2242. https://doi.org/10.1021/la0348463
- Z. Li, G. Zhou, C. Li, and T. Cheng, "Effect of Pr on copper-based catalysts for ethane oxychlorination", Catal. Commun., Vol. 40, 2013, pp. 42-46. https://doi.org/10.1016/j.catcom.2013.05.020
-
M. Luo, P. Fang, M. He, and Y. Xie, "In situ XRD, Raman, and TPR studies of CuO/
$Al_2O_3$ catalysts for CO oxidation", J. Mol. Catal. A Chem., Vol. 239, 2005, pp. 243-248. https://doi.org/10.1016/j.molcata.2005.06.029