Fig. 1. I-E curve (CV) for Ni in Watts bath, A bath and B1 bath, scan rate 5 mV/s at 50℃
Fig. 2. XRD patterns of the Ni-Zn-Fe electrode (B1 bath) surface prepared by electrodeposition (a) as prepared (b) after leaching
Fig. 3. SEM images of the Ni-Zn-Fe electrode (B1 bath) surface prepared by electrodeposition (a) as prepared (b) after leaching
Fig. 4. I-E curve (LSV) of the electrodes prepared by electrodeposition in watts bath, A bath and B1 bath, scan rate 0.1 mV/s at 25℃ (1 M KOH)
Fig. 6. SEM images of the Ni-Zn-Fe electrodes (B1 bath) surface prepared by electrodeposition with different current densities (a) 70, (b) 100, and (c) 130 mA/cm2
Fig. 7. I-E curve (LSV) of the Ni-Zn-Fe electrodes (B1 bath) prepared by electrodeposition with different current densities, scan rate 0.1 mV/s at 25℃ (1 M KOH)
Fig. 8. SEM images of the Ni-Zn-Fe electrodes (B1 bath) surface prepared by electrodeposition (a) 70 mA/cm2, 2,000 s and (b) 130 mA/cm2, 1,077 s
Fig. 9. I-E curve (LSV) of the Ni-Zn-Fe electrodes (B1 bath) prepared by on electrodeposition, scan rate 0.1 mV/s at 25℃ (1 M KOH)
Fig. 10. SEM images of the Ni-Zn-Fe electrodes (B1 bath) prepared by electrodeposition with different pH value of B bath (a) pH2 and (b) pH4
Fig. 11. I-E curve (LSV) of the Ni-Zn-Fe electrodes prepared by electrodeposition with different pH value of B1 bath and scan rate 0.1 mV/s at 25℃ (1 M KOH)
Fig. 13. I-E curve (LSV) of the Ni-Zn-Fe electrodes prepared by electrodeposition with different Ni, Fe composition of B bath and scan rate 0.1 mV/s at 25℃ (1 M KOH)
Fig. 5. SEM images showing the surface morphology of electrodeposited Ni-Zn-Fe (B1 bath) in Hull cell, corresponding current density of (a) 20, (b) 60, and (c) 100 mA/cm2
Fig. 12. SEM images of the Ni-Zn-Fe electrodes surface prepared by electrodeposition with different Ni, Fe composition of B bath (a, b) Ni11Fe1 and (c, d) Ni1Fe1 and (a, c) with low magnification (2,000) and (b, d) with high magnification (10,000)
Table 1. Composition of electrodeposition baths (g/L)
Table 2. Elemental composition results of the Ni-Zn-Fe electrodes (B1 bath) prepared by electrodeposition (weight%)
Table 3. Elemental composition results of electrodeposited Ni-Zn-Fe (B1 bath) in Hull cell, corresponding current density (weight%)
Table 4. Elemental composition results of the Ni-Zn-Fe electrodes (B1 bath) prepared by electrodeposition with different current densities (weight%)
Table 5. Elemental composition results of the Ni-Zn-Fe electrodes (B1 bath) prepared by ectrodeposition (weight%)
Table 6. Elemental composition results of the Ni-Zn-Fe electrodes prepared by electrodeposition with different pH value of B1 bath (weight%)
Table 7. Elemental composition results of the Ni-Zn-Fe electrodes prepared by electrodeposition with different Ni, Fe composition of B1 bath and B2 bath (weight%)
참고문헌
- D. M. F. Santos and C. A. C. Sequeira, "Hydrogen production by alkaline water electrolysis", Quim Nova, Vol. 36, No. 8, 2013, pp. 1176-1193. https://doi.org/10.1590/S0100-40422013000800017
- O. Schmidt, A. Gambhir, I. Staffell, A. Hawkes, J. Nelson, and S. Few, "Future cost and performance of water electrolysis: An expert elicitation study", Int. J. Hydrogen Energy, Vol. 42, 2017, pp. 30470-30492. https://doi.org/10.1016/j.ijhydene.2017.10.045
- J. H. Kim, D. H. Youn, K. Kawashima, J. Lin, and H. Lim, "An active nanoporous Ni(Fe) OER electrocatalyst via selective dissolution of Cd in alkaline media", Appl. Catal. B, Environmental, Vol. 225, 2018, pp. 1-7. https://doi.org/10.1016/j.apcatb.2017.11.053
- M. Gong and H. Dai, "A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts", Nano Res., Vol. 8, No. 1, 2015, pp. 23-39. https://doi.org/10.1007/s12274-014-0591-z
- X. Li, F. C. Walsh, and D. Pletcher, "Nickel based electrocatalysts for oxygen evolution in high current density, alkaline water electrolysis", Phys. Chem. Chem. Phys., Vol. 13, 2011, pp. 1162-1167. https://doi.org/10.1039/C0CP00993H
- S. Klaus, Y. Cai, M. W. Louie, L. Trotochaoud, and A. T. Bell, "Effect of Fe electrolyte impurities on Ni(OH)2/NiOOH structure and oxygen evolution activity", J. Phys. Chem., Vol. 119, 2018, pp. 7243-7254.
- F. J. Perez-Alonso, C. Adan, S. Rojas, M. A. Pena, and J. L. G. Fierro, "Ni/Fe electrodes prepared by electrodeposition method over different substrates for oxygen evolution reaction in alkaline medium", Int. J. Hydrogen Energy, Vol. 39, 2014, pp. 5204-5212. https://doi.org/10.1016/j.ijhydene.2013.12.186
- M. M. Abou-Krisha, F. H. Assaf, and S. A. El-Naby, "Electrodeposition behavior of zinc-nickel-iron alloys from sulfate bath", J. Coat. Technol., Vol. 6, No. 3, 2009, pp. 391-399. https://doi.org/10.1007/s11998-008-9134-4
- S. Basavanna and Y. A. Naik, "Electrochemical studies of Zn-Ni alloy coatings from acid chloride bath", J. Appl. Electrochem., Vol. 39, 2009, pp. 1975-1982. https://doi.org/10.1007/s10800-009-9907-1
- M. M. Abou-Krisha, "Effect of pH and current density on the electrodeposition of Zn-Ni-Fe alloys from a sulfate bath", J. Coat. Technol. Res., Vol. 9, No. 6, 2012, pp. 775-783. https://doi.org/10.1007/s11998-012-9402-1
-
X. Wang, Z. Wang, W. Yang, T. Wang, and Q. Chen, "Fabrication of
$Co_2Ni_8$ /CNTs alloy hollow-nanostructured microspheres:facile synthesis and magnetic properties", J. Supercond. Nov. Magn., Vol. 29, 2016, pp. 343-347. https://doi.org/10.1007/s10948-015-3231-2 - S. Y. Lee, H. Jung, S. Y. Chae, H. S. Oh, B. K. Min, and Y. J. Hwang, "Insight into water oxidation activity enhancement of Ni-based electrocatalysts interacting with modified carbon supports", Electrochim. Acta, Vol. 281, 2018, pp. 684-691. https://doi.org/10.1016/j.electacta.2018.05.170
- R. K. Shervedani and A. Lasia, "Evaluation of the surface roughness of microporous Ni-Zn-P electrodes by in situ methods", J. Appl. Electrochem., Vol. 29, 1999, pp. 979-986. https://doi.org/10.1023/A:1003577631897
- M. Lukaszewski, M. Soszko, and A. Czerwinski, "Electrochemical methods of real surface area determination of noble metal electrodes-an overview", Int. J. Electrochem. Sci., Vol. 11, 2016, pp. 4442-4469.
- R. Winand, "Electrodeposition of metals and alloys-new result and persepctives", Electrochim. Acta, Vol. 39, No. 8-9, 1994, pp. 1091-1105. https://doi.org/10.1016/0013-4686(94)E0023-S
- A. M. Rashidi and A. Amadeh, "The effect of current density on the grain size of electrodeposited nanocrystalline nickel coatings", Surface & Coatings Technology, Vol. 202, 2008, pp. 3772-3776. https://doi.org/10.1016/j.surfcoat.2008.01.018
- A. A. Rasmussen, P. Moller, and M. A. J. Somers, "Microstructure and thermal stability of nickel layers electrodepositied from an addictive-free sulphamate-based electrolyte", Surf. Coat. Technol., Vol. 200, 2006, pp. 6037-6046. https://doi.org/10.1016/j.surfcoat.2005.09.019
- N. Todoroki and T. Wadayama, "Oxygen redcution and oxygen evolution reaction activity on Co/Pt(111) surface in alkaline solution", ECS. Trans., Vol. 86, No. 13, 2018, pp. 569-574. https://doi.org/10.1149/08613.0569ecst
-
T. Borucinski, S. Rausch, and H. Wendt, "Raney nickel activated
$H_2$ -cathodes Part II: Correlation of morphology and effective catalytic activity of Raney-nickel coated cathodes", J. Appl. Electrochem., Vol. 22, 1992, pp. 1031-1038. https://doi.org/10.1007/BF01029581 - A. K. Chaudhari and V. B. Singh, "A review of fundamental aspects, characterization and application of electrodeposited nanocrystalline iron group metals, Ni-Fe alloy and oxide ceramics reinforced nanocomposite coatings", J. Alloys Compd., Vol. 751, 2018, pp. 194-214. https://doi.org/10.1016/j.jallcom.2018.04.090
- S. L. Diaz, O. R. Mattos, O. E. Barcia, F. J. F. Miranda, "ZnFe anomalous electrodeposition: stationaries and local pH measurements", Electrochim. Acta, Vol. 47, 2002, pp. 4091-4100. https://doi.org/10.1016/S0013-4686(02)00416-4
- S. Ando, "Electrodeposition behavior of Zn-Ni alloys produced from sulfate solutions at high current densities", Materials Transactions, Vol. 57, No. 11, 2016, pp. 1908-1914. https://doi.org/10.2320/matertrans.M2016253
- E. Potvin and L. Brossard, "Electrocatalytic activity of Ni-Fe anodes for alkaline water electrolysis", Mater. Chem. Phys., Vol. 31, 1992, pp. 311-318. https://doi.org/10.1016/0254-0584(92)90192-B
- M. W. Louie and A. T. Bell, "An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen", J. Am. Chem. Soc., Vol. 135, 2013, pp. 12329-12337. https://doi.org/10.1021/ja405351s